The formation of a covalent bond with the target is essential for a number of successful drugs, yet tools for covalent docking without significant restrictions regarding warhead or receptor classes are rare and limited in use. In this work we present DOCKTITE, a highly versatile workflow for covalent docking in the Molecular Operating Environment (MOE) combining automated warhead screening, nucleophilic side chain attachment, pharmacophore-based docking, and a novel consensus scoring approach. The comprehensive validation study includes pose predictions of 35 protein/ligand complexes which resulted in a mean RMSD of 1.74 Å and a prediction rate of 71.4% with an RMSD below 2 Å, a virtual screening with an area under the curve (AUC) for the receiver operating characteristics (ROC) of 0.81, and a significant correlation between predicted and experimental binding affinities (ρ = 0.806, R(2) = 0.649, p < 0.005).
The purification of porcine gastric mucin was optimized and key properties such as gel formation at acidic pH, lubrication behavior and interactions of mucins with charged molecules were preserved.
The major challenge for proteasome inhibitor design lies in achieving high selectivity for, and activity against, the target, which requires specific interactions with the active site. Novel ligands aim to overcome off-target-related side effects such as peripheral neuropathy, which is frequently observed in cancer patients treated with the FDA-approved proteasome inhibitors bortezomib (1) or carfilzomib (2). A systematic comparison of electrophilic headgroups recently identified the class of α-keto amides as promising for next generation drug development. On the basis of crystallographic knowledge, we were able to develop a structure-activity relationship (SAR)-based approach for rational ligand design using an electronic parameter (Hammett's σ) and in silico molecular modeling. This resulted in the tripeptidic α-keto phenylamide BSc4999 [(S)-3-(benzyloxycarbonyl-(S)-leucyl-(S)-leucylamino)-5-methyl-2-oxo-N-(2,4-dimethylphenyl)hexanamide, 6 a], a highly potent (IC50 = 38 nM), cell-permeable, and slowly reversible covalent inhibitor which targets both the primed and non-primed sites of the proteasome's substrate binding channel as a special criterion for selectivity. The improved inhibition potency and selectivity of this new α-keto phenylamide makes it a promising candidate for targeting a wider range of tumor subtypes than commercially available proteasome inhibitors and presents a new candidate for future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.