Statistical voxel-based lesion-behavior mapping (VLBM) in neurological patients with brain lesions is frequently used to examine the relationship between structure and function of the healthy human brain. Only recently, two simulation studies noted reduced anatomical validity of this method, observing the results of VLBM to be systematically misplaced by about 16 mm. However, both simulation studies differed from VLBM analyses of real data in that they lacked the proper use of two correction factors: lesion size and "sufficient lesion affection." In simulation experiments on a sample of 274 real stroke patients, we found that the use of these two correction factors reduced misplacement markedly compared to uncorrected VLBM. Apparently, the misplacement is due to physiological effects of brain lesion anatomy. Voxel-wise topographies of collateral damage in the real data were generated and used to compute a metric for the inter-voxel relation of brain damage. "Anatomical bias" vectors that were solely calculated from these inter-voxel relations in the patients' real anatomical data, successfully predicted the VLBM misplacement. The latter has the potential to help in the development of new VLBM methods that provide even higher anatomical validity than currently available by the proper use of correction factors. Hum Brain Mapp 38:1692-1701, 2017. © 2017 Wiley Periodicals, Inc.
Neuroscience has a long history of inferring brain function by examining the relationship between brain injury and subsequent behavioral impairments. The primary advantage of this method over correlative methods is that it can tell us if a certain brain region is necessary for a given cognitive function. In addition, lesion-based analyses provide unique insights into clinical deficits. In the last decade, statistical voxel-based lesion behavior mapping (VLBM) emerged as a powerful method for understanding the architecture of the human brain. This review illustrates how VLBM improves our knowledge of functional brain architecture, as well as how it is inherently limited by its mass-univariate approach. A wide array of recently developed methods appear to supplement traditional VLBM. This paper provides an overview of these new methods, including the use of specialized imaging modalities, the combination of structural imaging with normative connectome data, as well as multivariate analyses of structural imaging data. We see these new methods as complementing rather than replacing traditional VLBM, providing synergistic tools to answer related questions. Finally, we discuss the potential for these methods to become established in cognitive neuroscience and in clinical applications.
Multivariate lesion behaviour mapping based on machine learning algorithms has recently been suggested to complement the methods of anatomo-behavioural approaches in cognitive neuroscience. Several studies applied and validated support vector regression-based lesion symptom mapping (SVR-LSM) to map anatomo-behavioural relations. However, this promising method, as well as the multivariate approach per se, still bears many open questions. By using large lesion samples in three simulation experiments, the present study empirically tested the validity of several methodological aspects. We found that (i) correction for multiple comparisons is required in the current implementation of SVR-LSM, (ii) that sample sizes of at least 100-120 subjects are required to optimally model voxel-wise lesion location in SVR-LSM, and (iii) that SVR-LSM is susceptible to misplacement of statistical topographies along the brain's vasculature to a similar extent as mass-univariate analyses. K E Y W O R D S machine learning, support vector regression, SVR-LSM, voxel-based lesion behaviour mapping, voxel-based lesion symptom mapping, VLSM
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.