Chronic neuropathic pain, caused by lesions in the peripheral or central nervous system, comes in many forms. We describe current approaches to the diagnosis and assessment of neuropathic pain and discuss the results of recent research on its pathophysiologic mechanisms. Randomized controlled clinical trials of gabapentin, the 5% lidocaine patch, opioid analgesics, tramadol hydrochloride, and tricyclic antidepressants provide an evidence-based approach to the treatment of neuropathic pain, and specific recommendations are presented for use of these medications. Continued progress in basic and clinical research on the pathophysiologic mechanisms of neuropathic pain may make it possible to predict effective treatments for individual patients by application of a pain mechanism-based approach.
Two trivalent constructs consisting of single-chain Fv antibody fragments (scFvs) specific for the interleukin-3 receptor a chain (CD123), CD33 and the Fcc-receptor III (CD16) were designed and characterized for the elimination of acute myeloid leukaemia (AML) cells. The dual targeting single-chain Fv triplebody (sctb) [123 · ds16 · 33] and the mono targeting sctb [123 · ds16 · 123] both specifically bound their respective target antigens and were stable in human serum at 37°C for at least 5 d. Both constructs induced potent antibody-dependent cellular cytotoxicity (ADCC) of two different AML-derived CD33-and CD123 double-positive cell lines in the low picomolar range using isolated mononuclear cells (MNCs) as effector cells. In these experiments the dual targeting molecule produced significantly stronger lysis than the mono targeting agent. In addition, the sctbs showed a high potency in mediating ADCC of primary leukaemia cells isolated from peripheral blood or bone marrow of seven AML patients. Hence, these novel molecules displayed potent anti-leukaemic effects against AML cells in vitro and represent attractive candidates for further preclinical development.
Single-chain Fv triplebodies (sctb), consisting of a single polypeptide chain with 3 single-chain antibody variable fragments connected in tandem, were generated as antileukemic agents. A CD19-specific sctb of this format has previously been shown to be superior to a bispecific single-chain Fv antibody fragment (bsscFv) for the elimination of leukemic B-lineage cells, but corresponding targeted agents for the treatment of acute myeloid leukemia are still lacking. For this purpose, both a bsscFv and a sctb specific for CD33 and the trigger molecule CD16 (FcgammaRIII) were produced. The sctb displayed 3.5-fold greater avidity for CD33 than the bsscFv 33xds16, whereas both had close to equal affinity for CD16. In antibody-dependent cellular cytotoxicity (ADCC) reactions with human mononuclear cells as effectors, both the bsscFv 33xds16 and the sctb induced lysis of tumor cells with half maximum effective concentrations (EC50) in the low picomolar range. It is interesting to note that the sctb promoted equal lysis of human leukemia-derived cell lines at 10 to 200-fold lower concentrations than the bsscFv. Both molecules mediated ADCC of primary patient cells. In conclusion, both the bsscFv 33xds16 and the sctb 33xds16x33 eliminated acute myeloid leukemia cells in ADCC reactions, but the novel sctb format showed significantly greater specific activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.