BackgroundScientists have long been driven by the desire to describe, organize, classify, and compare objects using taxonomies and/or ontologies. In contrast to biology, geology, and many other scientific disciplines, the world of chemistry still lacks a standardized chemical ontology or taxonomy. Several attempts at chemical classification have been made; but they have mostly been limited to either manual, or semi-automated proof-of-principle applications. This is regrettable as comprehensive chemical classification and description tools could not only improve our understanding of chemistry but also improve the linkage between chemistry and many other fields. For instance, the chemical classification of a compound could help predict its metabolic fate in humans, its druggability or potential hazards associated with it, among others. However, the sheer number (tens of millions of compounds) and complexity of chemical structures is such that any manual classification effort would prove to be near impossible.ResultsWe have developed a comprehensive, flexible, and computable, purely structure-based chemical taxonomy (ChemOnt), along with a computer program (ClassyFire) that uses only chemical structures and structural features to automatically assign all known chemical compounds to a taxonomy consisting of >4800 different categories. This new chemical taxonomy consists of up to 11 different levels (Kingdom, SuperClass, Class, SubClass, etc.) with each of the categories defined by unambiguous, computable structural rules. Furthermore each category is named using a consensus-based nomenclature and described (in English) based on the characteristic common structural properties of the compounds it contains. The ClassyFire webserver is freely accessible at http://classyfire.wishartlab.com/. Moreover, a Ruby API version is available at https://bitbucket.org/wishartlab/classyfire_api, which provides programmatic access to the ClassyFire server and database. ClassyFire has been used to annotate over 77 million compounds and has already been integrated into other software packages to automatically generate textual descriptions for, and/or infer biological properties of over 100,000 compounds. Additional examples and applications are provided in this paper.ConclusionClassyFire, in combination with ChemOnt (ClassyFire’s comprehensive chemical taxonomy), now allows chemists and cheminformaticians to perform large-scale, rapid and automated chemical classification. Moreover, a freely accessible API allows easy access to more than 77 million “ClassyFire” classified compounds. The results can be used to help annotate well studied, as well as lesser-known compounds. In addition, these chemical classifications can be used as input for data integration, and many other cheminformatics-related tasks.Electronic supplementary materialThe online version of this article (doi:10.1186/s13321-016-0174-y) contains supplementary material, which is available to authorized users.
ChEBI is a database and ontology containing information about chemical entities of biological interest. It currently includes over 46 000 entries, each of which is classified within the ontology and assigned multiple annotations including (where relevant) a chemical structure, database cross-references, synonyms and literature citations. All content is freely available and can be accessed online at http://www.ebi.ac.uk/chebi. In this update paper, we describe recent improvements and additions to the ChEBI offering. We have substantially extended our collection of endogenous metabolites for several organisms including human, mouse, Escherichia coli and yeast. Our front-end has also been reworked and updated, improving the user experience, removing our dependency on Java applets in favour of embedded JavaScript components and moving from a monthly release update to a ‘live’ website. Programmatic access has been improved by the introduction of a library, libChEBI, in Java, Python and Matlab. Furthermore, we have added two new tools, namely an analysis tool, BiNChE, and a query tool for the ontology, OntoQuery.
The Chemistry Development Kit (CDK) is a freely available open-source Java library for Structural Chemo-and Bioinformatics. Its architecture and capabilities as well as the development as an open-source project by a team of international collaborators from academic and industrial institutions is described. The CDK provides methods for many common tasks in molecular informatics, including 2D and 3D rendering of chemical structures, I/O routines, SMILES parsing and generation, ring searches, isomorphism checking, structure diagram generation, etc. Application scenarios as well as access information for interested users and potential contributors are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.