Companies of all industrial sectors are increasingly integrating Internet of Things (IoT) technology into their processes to realize a data-driven transformation of their businesses. The generation and use of comprehensive process data in real-time and the connection of process entities enables an improvement and beneficial redesign of business processes of all kinds. However, a goal-oriented exploitation of IoT technology for digital transformation and Business Process Improvements (BPI) is challenging due to the complexity of integrating IoT into existing processes. Companies require appropriate guidance to evaluate and scope their initiatives regarding IoT-based BPI. We therefore propose a holistic IoT-based BPI Maturity Model that assists organizations to determine their current state and get assistance to optimize or develop specific capabilities. This paper provides an overview about the structured development process of the maturity model comprising an extensive literature review and a six-round Delphi study.
Maturity models are valuable management tools for assessing and managing capabilities and therefore creating a basis for their identification, prioritization, and further development. Numerous maturity assessment methods have been developed to support organizations in applying maturity models. However, these methods are mostly used for unique assessments and only provide a snapshot of the current state of capabilities and their maturity. Certainly, this does not reflect the continuous change of capabilities within dynamic organizational environments. Moreover, the systematic selection of suitable maturity models and the identification of the actions that should be targeted following the maturity assessment require more attention. To fill these research gaps, this study proposes the generally applicable Continuous Maturity Assessment Method (CMAM) that enables comprehensive and continuous maturity assessments. The CMAM comprises five steps that extend and advance existing principles of maturity assessment and can be implemented as an organizational routine. The rigorous development of the CMAM followed basic principles of the design science research methodology, including an evaluation of six organizations in different industry sectors and an extensive industrial case study.
The integration of high frequency event data from Internet of Things (IoT) devices into existing complex and mature Business Process Management Systems (BPMS) constitutes a major hurdle for many organizations. Event-Driven Business Process Management (EDBPM) is a paradigm to tackle this hurdle and to lever the enhancement of industrial IoT applications. Existing literature regarding EDBPM and its underlying technologies and methods form a heterogenous set of approaches, frameworks and applications that lacks standardization and maturity. In this context, the literature review of the work at hand conducts a survey about EDBPM focusing on its capabilities to be a lever for the scale of IoT applications. First, we perform an extensive literature research on EDBPM and related topics. Second, a literature analysis and synthesis are presented by summarizing and clustering the discovered publications. Furthermore, a future research agenda is formulated that addresses the main existing research gaps and challenges of EDBPM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.