We aimed to assess the impact of timing of surgery in elderly patients with acute hip fracture on morbidity and mortality. We systematically searched MEDLINE, the Cochrane Library, Embase, PubMed, and trial registries from 01/1997 to 05/2017, as well as reference lists of relevant reviews, archives of orthopaedic conferences, and contacted experts. Eligible studies had to be randomised controlled trials (RCTs) or prospective cohort studies, including patients 60 years or older with acute hip fracture. Two authors independently assessed study eligibility, abstracted data, and critically appraised study quality. We conducted meta-analyses using the generic inverse variance model. We included 28 prospective observational studies reporting data of 31,242 patients. Patients operated on within 48 hours had a 20% lower risk of dying within 12 months (risk ratio (RR) 0.80, 95% confidence interval (CI) 0.66–0.97). No statistical significant different mortality risk was observed when comparing patients operated on within or after 24 hours (RR 0.82, 95% CI 0.67–1.01). Adjusted data demonstrated fewer complications (8% vs. 17%) in patients who had early surgery, and increasing risk for pressure ulcers with increased time of delay in another study. Early hip surgery within 48 hours was associated with lower mortality risk and fewer perioperative complications.
A novel approach for the direct detection of oxidizing agents in aqueous solution is presented using diamond-like carbon (DLC) protected waveguides in combination with attenuated total reflectance (ATR) mid-infrared spectroscopy. Pulsed laser deposition was applied to produce high-quality DLC thin films on ZnSe ATR crystals with thicknesses of a few 100 nm. Scanning electron microscopy and X-ray photoelectron spectroscopy has been used to investigate the surface properties of the DLC films including the sp(3)/sp(2) hybridization ratio of the carbon bonds. Beside excellent adhesion of the DLC coatings to ZnSe crystals, these films show high chemical stability against strongly oxidizing agents. IR microscopy was utilized to compare differences in the chemical surface modification of bare and protected ATR waveguides when exposed to hydrogen peroxide, peracetic acid, and peroxydisulfuric acid. The feasibility of DLC protected waveguides for real-time concentration monitoring of these oxidizing agents was demonstrated by measuring calibration sets in a concentration range of 0.2-10%. Additionally, principal component regression has been applied to analyze multicomponent mixtures of hydrogen peroxide, acetic acid, and peracetic acid in aqueous solution. Due to high chemical stability and accurate monitoring capabilities, DLC protected waveguides represent a novel approach for directly detecting oxidizing agents in aqueous solution with promising potential for industrial process analysis.
Autologous blood products gain increasing interest in the field of regenerative medicine as well as in orthopedics, aesthetic surgery, and cosmetics. Currently, citrate-anticoagulated platelet-rich plasma (CPRP) preparations are often applied in osteoarthritis (OA), but more physiological and cell-free alternatives such as hyperacute serum (hypACT) are under development. Besides growth factors, blood products also bring along extracellular vesicles (EVs) packed with signal molecules, which open up a new level of complexity at evaluating the functional spectrum of blood products. Large proportions of EVs originated from platelets in CPRP and hypACT, whereas very low erythrocyte and monocyte-derived EVs were detected via flow cytometry. EV treatment of chondrocytes enhanced the expression of anabolic markers type II collagen, SRY-box transcription factor 9 (SOX9), and aggrecan compared to full blood products, but also the catabolic marker and tissue remodeling factor matrix metalloproteinase 3, whereas hypACT EVs prevented type I collagen expression. CPRP blood product increased SOX9 protein expression, in contrast to hypACT blood product. However, hypACT EVs induced SOX9 protein expression while preventing interleukin-6 secretion. The results indicate that blood EVs are sufficient to induce chondrogenic gene expression changes in OA chondrocytes, while preventing proinflammatory cytokine release compared to full blood product. This highlights the potential of autologous blood-derived EVs as regulators of cartilage extracellular matrix metabolism and inflammation, as well as candidates for new cell-free therapeutic approaches for OA.
Nowadays, the trend goes to better and more efficient gas turbine engines with lower emissions, greater durability and lower cycle costs. To this end, new materials such as Allvac 718PlusTM, should enhance the high temperature performance. The appearance, morphology and control of the δ-phase are of special interest because of their critical influence on grain structure, grain size and mechanical properties. In this work, the evolution and the morphology of the δ-phase during heat treatment between 900 and 1000°C for annealing times of up to 8 h are investigated in order to determine the time – temperature – precipitation diagram and to understand the phase morphology. For this, different analysis methods are applied, such as light microscopy analysis with computer-aided quantitative metallography, dual beam focused ion beam and both scanning electron and transmission electron microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.