In the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells. To study this, we generated a genetically modified mouse line in which we eliminated the light dependency of feedback by deleting glutamate receptors from mouse horizontal cells. This genetic modification allowed us to investigate the impact of horizontal cells on ganglion cell signaling independent of the actual mode of feedback in the outer retina and without pharmacological manipulation of signal transmission. In control and genetically modified mice (both sexes), we recorded the light responses of transient OFF-α retinal ganglion cells in the intact retina. Excitatory postsynaptic currents (EPSCs) were reduced and the cells were tuned to lower temporal frequencies and higher contrasts, presumably because photoreceptor output was attenuated. Moreover, receptive fields of recorded cells showed a significantly altered surround structure. Our data thus suggest that horizontal cells are responsible for adjusting the dynamic range of retinal ganglion cells and, together with amacrine cells, contribute to the center/surround organization of ganglion cell receptive fields in the mouse. Horizontal cells represent a major neuronal class in the mammalian retina and provide lateral feedback and feedforward signals to photoreceptors and bipolar cells, respectively. The mode of signal transmission remains controversial and, moreover, the contribution of horizontal cells to visual processing is still elusive. To address the question of how horizontal cells affect retinal output signals, we recorded the light responses of transient OFF-α retinal ganglion cells in a newly generated mouse line. In this mouse line, horizontal cell signals were no longer modulated by light. With light response recordings, we show that horizontal cells increase the dynamic range of retinal ganglion cells for contrast and temporal changes and contribute to the center/surround organization of their receptive fields.
Electrical coupling has been reported to occur only between homotypic retinal ganglion cells, in line with the concept of parallel processing in the early visual system. Here, however, we show reciprocal correlated firing between heterotypic ganglion cells in multielectrode array recordings during light stimulation in retinas of adult guinea pigs of either sex. Heterotypic coupling was further confirmed via tracer spread after intracellular injections of single cells with neurobiotin. Both electrically coupled cell types were sustained ON center ganglion cells but showed distinct light response properties and receptive field sizes. We identified one of the involved cell types as sustained ON ␣-ganglion cells. The presence of electrical coupling between heterotypic ganglion cells introduces a network motif in which the signals of distinct ganglion cell types are partially mixed at the output stage of the retina.
A large number of behavioral experiments have demonstrated the existence of a magnetic sense in many animal species. Further, studies with immediate gene expression markers have identified putative brain regions involved in magnetic information processing. In contrast, very little is known about the physiology of the magnetic sense and how the magnetic field is neuronally encoded. In vivo electrophysiological studies reporting neuronal correlates of the magnetic sense either have turned out to be irreproducible for lack of appropriate artifact controls or still await independent replication. Thus far, the research field of magnetoreception has little exploited the power of ex vivo physiological studies, which hold great promise for enabling stringent controls. However, tight space constraints in a recording setup and the presence of magnetizable materials in setup components and microscope objectives make it demanding to generate well-defined magnetic stimuli at the location of the biological specimen. Here, we present a solution based on a miniature vector magnetometer, a coil driver, and a calibration routine for the coil system to compensate for magnetic distortions in the setup. The magnetometer fits in common physiology recording chambers and has a sufficiently small spatial integration area to allow for probing spatial inhomogeneities. The coil-driver allows for the generation of defined non-stationary fast changing magnetic stimuli. Our ex vivo multielectrode array recordings from avian retinal ganglion cells show that artifacts induced by rapid magnetic stimulus changes can mimic the waveform of biological spikes on single electrodes. However, induction artifacts can be separated clearly from biological responses if the spatio-temporal characteristics of the artifact on multiple electrodes is taken into account. We provide the complete hardware design data and software resources for the integrated magnetic stimulation system.
A large number of behavioral experiments have demonstrated the existence of a magnetic sense in many animal species. Further, studies with immediate gene expression markers have identified putative brain regions involved in magnetic information processing. In contrast, very little is known about the physiology of the magnetic sense and how the magnetic field is neuronally encoded. In vivo electrophysiological studies reporting neuronal correlates of the magnetic sense either have turned out to be irreproducible for lack of appropriate artifact controls or still await independent replication. Thus far, the research field of magnetoreception has little exploited the power of ex vivo physiological studies, which hold great promise for enabling stringent controls. However, tight space constraints in a recording setup and the presence of magnetizable materials in setup components and microscope objectives make it demanding to generate well-defined magnetic stimuli at the location of the biological specimen. Here, we present a solution based on a miniature vector magnetometer, a coil driver, and a calibration routine for the coil system to compensate for magnetic distortions in the setup. The magnetometer fits in common physiology recording chambers and has a sufficiently small spatial integration area to allow for probing spatial inhomogeneities. The coil-driver allows for the generation of defined non-stationary fast changing magnetic stimuli. Our ex vivo multielectrode array recordings from avian retinal ganglion cells show that artifacts induced by rapid magnetic stimulus changes can mimic the waveform of biological spikes on single electrodes. However, induction artifacts can be separated clearly from biological responses if the spatio-temporal characteristics of the artifact on multiple electrodes is taken into account. We provide the complete hardware design data and software resources for the integrated magnetic stimulation system.
In contrast to most parts of the vertebrate nervous system, the ganglion cell axons in the retina typically lack any myelination. Ganglion cell axons of most species only become myelinated once they leave the retina to form the optic nerve. The avian retina is a well known exception in that ganglion cell axons are partly myelinated in the retinal nerve fiber layer. However, the functional and structural properties of myelination in the nerve fiber layer remain elusive. Here, we used large-scale multi-electrode array recordings in combination with immunohisto-chemistry and fluorescence microscopy of European quail and pigeon retinas to investigate myelination of retinal ganglion cell axons. Intraretinal myelination was accompanied by the formation of nodes of Ranvier. The internode length was positively correlated with the axon diameter. The variability of internode lengths along each axon was significantly smaller than across axons. Saltatory conduction of action potentials was observed in a large population of recorded cells. On average, myelinated axons had higher conduction velocities than unmyelinated axons. However, both groups showed a significant overlap at low velocities. The number of simultaneously active nodes was positively correlated with the conduction velocity. In contrast, the internode length and the time it took a node to activate were weak predictors for the conduction velocity. However, the conduction velocity was well described by the number of activated nodes, the internode length, and the activation time in concert.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.