We present an in-depth investigation regarding the electron-accepting nature of pressure-synthesized carbon nanodots (pCNDs) in combination with porphyrins as excited-state electron donors. To this end, electrostatic attractions involving negative charges, which are present on the pCND surface, are essential to govern the hybrid assembly, on one hand, and charge separation, on the other hand.
Non-melanoma skin cancer (NMSC) is a heterogeneous tumor entity that is vastly determined by age and UV-light exposure leading to a great mutational burden in cancer cells. However, the success of immune checkpoint blockade in advanced NMSC and the incidence and disease control rates of NMSC in organ transplant recipients compared to immunologically uncompromised patients point toward the emerging importance of the immunologic activity of NMSC. To gain first insight into the role of T-cell and macrophage infiltration in NMSC of the head and neck and capture their different immunogenic profiles, which appear to be highly relevant for the response to immunotherapy, we conducted a whole slide analysis of 107 basal cell carcinoma (BCC) samples and 117 cutaneous squamous cell carcinoma (cSCC) samples. The CD8+ and CD68+ immune cell expression in both cancer types was evaluated by immunohistochemistry and a topographic distribution profile, and the proportion of both cell populations within the two tumor entities was assessed. The results show highly significant differences in terms of CD8+ T-cell and CD68+ macrophage infiltration in BCC and cSCC and indicate cSCC as a highly immunogenic tumor. Yet, BCC presents less immune cell infiltration; the relation between the immune cells compared to cSCC does not show any significant difference. These findings help explain disparities in local aggressiveness, distant metastasis, and eligibility for immune checkpoint blockade in both tumor entities and encourage further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.