Complement has been implicated in liver repair after toxic injury. Here, we demonstrate that complement components are essential for liver regeneration, and mediate their effect by interacting with key signaling networks that promote hepatocyte proliferation. C3- or C5-deficient mice exhibited high mortality, parenchymal damage, and impaired liver regeneration after partial hepatectomy. Mice with dual C3 and C5 deficiency had a more exacerbated phenotype that was reversed by combined C3a and C5a reconstitution. Interception of C5a receptor signaling resulted in suppression of IL-6/TNFα induction and lack of C3 and C5a receptor stimulation attenuated nuclear factor–κB/STAT-3 activation after hepatectomy. These data indicate that C3a and C5a, two potent inflammatory mediators of the innate immune response, contribute essentially to the early priming stages of hepatocyte regeneration.
Although the complement system has been implicated in liver regeneration after toxic injury and partial hepatectomy, the mechanism or mechanisms through which it participates in these processes remains ill-defined. In this study, we demonstrate that complement activation products (C3a, C3b/iC3b) are generated in the serum of experimental mice after CCl4 injection and that complement activation is required for normal liver regeneration. Decomplementation by cobra venom factor resulted in impaired entry of hepatocytes into S phase of the cell cycle. In addition, livers from C3-deficient (C3−/−) mice showed similarly impaired proliferation of hepatocytes, along with delayed kinetics of both hepatocyte hyperplasia and removal of injured liver parenchyma. Restoration of hepatocyte proliferative capabilities of C3−/− mice through C3a reconstitution, as well as the impaired regeneration of C3a receptor-deficient mice, demonstrated that C3a promotes liver cell proliferation via the C3a receptor. These findings, together with data showing two waves of complement activation, indicate that C3 activation is a pivotal mechanism for liver regeneration after CCl4 injury, which fulfills multiple roles; C3a generated early after toxin injection is relevant during the priming of hepatocytes, whereas C3 activation at later times after CCl4 treatment contributes to the clearance of injured tissue.
Complement effectors are known to contribute to host cell injury in several inflammatory diseases. Contrary to this paradigm, in this study utilizing surgical liver resection (partial hepatectomy) in various complement-deficient mice as a model, we have demonstrated that complement anaphylatoxins C3a and C5a are required for the survival of liver cells during regeneration. The mechanisms of these cytoprotective functions of complement were related to the regulation of IL-6 and TNF production or release after liver resection. Disturbances in the cytokine milieu, induced by a loss of complement activity, were found to alter prosurvival signaling, including the IL-6/STAT3 and PI3K/Akt/mammalian target of rapamycin pathways. In conclusion, this study documents functions of complement proteins as prosurvival factors that, through their interactions with cytokines, inhibit apoptotic signaling in proliferating cells of epithelial origin.
IntroductionAlthough many surgeons have adopted the use of biologic and biosynthetic meshes in complex abdominal wall hernia repair, others have questioned the use of these products. Criticism is addressed in several review articles on the poor standard of studies reporting on the use of biologic meshes for different abdominal wall repairs. The aim of this consensus review is to conduct an evidence-based analysis of the efficacy of biologic and biosynthetic meshes in predefined clinical situations.MethodsA European working group, “BioMesh Study Group”, composed of invited surgeons with a special interest in surgical meshes, formulated key questions, and forwarded them for processing in subgroups. In January 2016, a workshop was held in Berlin where the findings were presented, discussed, and voted on for consensus. Findings were set out in writing by the subgroups followed by consensus being reached. For the review, 114 studies and background analyses were used.ResultsThe cumulative data regarding biologic mesh under contaminated conditions do not support the claim that it is better than synthetic mesh. Biologic mesh use should be avoided when bridging is needed. In inguinal hernia repair biologic and biosynthetic meshes do not have a clear advantage over the synthetic meshes. For prevention of incisional or parastomal hernias, there is no evidence to support the use of biologic/biosynthetic meshes. In complex abdominal wall hernia repairs (incarcerated hernia, parastomal hernia, infected mesh, open abdomen, enterocutaneous fistula, and component separation technique), biologic and biosynthetic meshes do not provide a superior alternative to synthetic meshes.ConclusionThe routine use of biologic and biosynthetic meshes cannot be recommended.
Gain-of-function mutations of the Cu/Zn superoxide dismutase (SOD1) gene cause dominantly inherited familial amyotrophic lateral sclerosis. The identification of differentially regulated proteins in spinal cords of paralyzed mice expressing SOD1(G93A) may contribute to understanding mechanisms of toxicity by mutant SOD1. Protein profiling showed dysregulation of Stathmin with a marked decrease of its most acidic and phosphorylated isoform, and up-regulation of heat shock proteins 25 and 27, peroxiredoxin 6, phosphatidylinositol transfer protein-alpha, apolipoprotein E, and ferritin heavy chain. Stathmin accumulated in the cytoplasm of 30% of spinal cord motor neurons with fragmented Golgi apparatus. Overexpression of Stathmin in HeLa cells was associated with collapse of microtubule networks and Golgi fragmentation. These results, together with the decrease of one Stathmin isoform, suggest a role of the protein in Golgi fragmentation. Mutant SOD1 co-precipitated and co-localized with Hsp25 in neurons and astrocytes. Mutant SOD1 may thus deprive cells of the anti-apoptotic and other protective activities of Hsp25. Astrocytes contained peroxiredoxin 6, a unique nonredundant antioxidant. The up-regulation of peroxiredoxin 6 probably constitutes a defense to oxidative stress induced by SOD1(G93A). Direct effects of SOD1(G93A) or sequential reactions triggered by the mutant may cause the protein changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.