Abstract. Urbanisation is an important cause of species extinctions. Although urban water systems are also highly modified, studies on aquatic or semi-aquatic organisms are rare. The aim of this study is to identify the factors that determine species richness of Odonata in 22 Central European cities and along an urban-rural gradient within six of them. With 64 indigenous species in total and an average of 33 species per city, the species richness of Odonata in Central European cities is comparatively high. A generalised linear model indicates that species richness is positively related to city area. Additional predictors are climatic variables (temperature amplitude, sunshine duration and July temperature) and the year last studied. Since most cities are usually located in areas with naturally high habitat heterogeneity, we assume that cities should be naturally rich in dragonflies. The role of city area as a surrogate for habitat and structural richness most likely explains why it is strongly associated with Odonata species richness. The relationship between species richness and the climatic variables probably reflects that Odonata species richness in Central Europe is limited by warm and sunny conditions more than by availability of water. The temporal effect (the year last studied) on species richness is likely to be a consequence of the recent increase in Mediterranean species associated with global warming. Urbanisation clearly has an adverse effect on the species diversity of Odonata. Species richness increases along a gradient from the centre of a city to the rural area and is significantly highest in rural areas. This pattern probably reflects a gradient of increasing habitat quality from the centre of cities to rural areas. Moreover, the number of water bodies is generally very low in the city centres. Based on our results, we make recommendations for increasing the abundance and number of species of dragonflies in cities.
Aim: Recent studies suggest insect declines in parts of Europe; however, the generality of these trends across different taxa and regions remains unclear. Standardized data are not available to assess large-scale, long-term changes for most insect groups but opportunistic citizen science data are widespread for some. Here, we took advantage of citizen science data to investigate distributional changes of Odonata.Location: Germany. Methods:We compiled over 1 million occurrence records from different regional databases. We used occupancy-detection models to account for imperfect detection and estimate annual distributions for each species during 1980-2016 within 5 × 5 kmThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Recent studies suggest insect declines in parts of Europe; however, the generality of these trends across different taxa and regions remains unclear. Standardized data are not available to assess large-scale, long-term changes for most insect groups but opportunistic citizen science data is widespread for some taxa. We compiled over 1 million occurrence records of Odonata (dragonflies and damselflies) from different regional databases across Germany. We used occupancy-detection models to estimate annual distributional changes between 1980 and 2016 for each species. We related species attributes to changes in the species distributions and inferred possible drivers of change. Species showing increases were generally warm-adapted species and/or running water species while species showing decreases were cold-adapted species using standing water habitats such as bogs. We developed a novel approach using time-series clustering to identify groups of species with similar patterns of temporal change. Using this method, we defined five typical patterns of change for Odonata, each associated with a specific combination of species attributes. Overall, trends in Odonata provide mixed news since improved water quality, coupled with positive impacts of climate change, could explain the positive trend status of many species. At the same time, declining species point to conservation challenges associated with habitat loss and degradation. Our study demonstrates the great value of citizen science data for assessing large-scale distributional change and conservation decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.