To reduce the secondary metabolite background in Aspergillus nidulans and minimize the rediscovery of compounds and pathway intermediates, we have created a “genetic dereplication” strain in which we have deleted eight of the most highly expressed secondary metabolite gene clusters (more than 244,000 base pairs deleted in total). This strain has allowed us to discover a novel compound that we designate aspercryptin and to propose a biosynthetic pathway for the compound. Interestingly, aspercryptin is formed from compounds produced by two separate gene clusters, one of which makes the well-known product cichorine. This raises the exciting possibility that fungi use differential regulation of expression of secondary metabolite gene clusters to increase the diversity of metabolites they produce.
To reduce the secondary metabolite background in Aspergillus nidulans and minimize the rediscovery of compounds and pathway intermediates, we have created a "genetic dereplication" strain in which we have deleted eight of the most highly expressed secondary metabolite gene clusters (more than 244,000 base pairs deleted in total). This strain has allowed us to discover a novel compound that we designate aspercryptin and to propose a biosynthetic pathway for the compound. Interestingly, aspercryptin is formed from compounds produced by two separate gene clusters, one of which makes the well-known product cichorine. This raises the exciting possibility
The filamentous fungus Aspergillus clavatus is known to produce a variety of secondary metabolites (SM) such as patulin, pseurotin A, and cytochalasin E. In fungi, the production of most SM is strongly influenced by environmental factors and nutrients. Furthermore, it has been shown that the regulation of SM gene clusters is largely based on modulation of a chromatin structure. Communication between fungi and bacteria also triggers chromatin-based induction of silent SM gene clusters. Consequently, chemical chromatin effectors known to inhibit histone deacetylases (HDACs) and DNA-methyltransferases (DNMTs) influence the SM profile of several fungi. In this study, we tested the effect of five different chemicals, which are known to affect chromatin structure, on SM production in A. clavatus using two growth media with a different organic nitrogen source. We found that production of patulin was completely inhibited and cytochalasin E levels strongly reduced, whereas growing A. clavatus in media containing soya-derived peptone led to substantially higher pseurotin A levels. The HDAC inhibitors valproic acid, trichostatin A and butyrate, as well as the DNMT inhibitor 5-azacytidine (AZA) and N-acetyl-d-glucosamine, which was used as a proxy for bacterial fungal co-cultivation, had profound influence on SM accumulation and transcription of the corresponding biosynthetic genes. However, the repressing effect of the soya-based nitrogen source on patulin production could not be bypassed by any of the small chemical chromatin effectors. Interestingly, AZA influenced some SM cluster genes and SM production although no Aspergillus species has yet been shown to carry detectable DNA methylation.
For decades, fungi have been the main source for the discovery of novel antimicrobial drugs. Recent sequencing efforts revealed a still high number of so far unknown “cryptic” secondary metabolites. The production of these metabolites is presumably epigenetically silenced under standard laboratory conditions. In this study, we investigated the effect of six small mass chemicals, of which some are known to act as epigenetic modulators, on the production of antimicrobial compounds in 54 spore forming fungi. The antimicrobial effect of fungal samples was tested against clinically facultative pathogens and multiresistant clinical isolates. In total, 30 samples of treated fungi belonging to six different genera reduced significantly growth of different test organisms compared to the untreated fungal sample (growth log reduction 0.3–4.3). For instance, the pellet of Penicillium restrictum grown in the presence of butyrate revealed significant higher antimicrobial activity against Staphylococcus (S.) aureus and multiresistant S. aureus strains and displayed no cytotoxicity against human cells, thus making it an ideal candidate for antimicrobial compound discovery. Our study shows that every presumable fungus, even well described fungi, has the potential to produce novel antimicrobial compounds and that our approach is capable of rapidly filling the pipeline for yet undiscovered antimicrobial substances.
One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity against antibiotic resistant strains, suggesting a possible application in combinatorial antibiotic treatment against resistant pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.