Direct laser interference patterning (DLIP) is used to produce periodic line-like patterns on titanium surfaces. An Nd:YAG laser operating at 532 nm wavelength with a pulse duration of 8 ns is used for the laser patterning process. The generated periodic patterns with spatial periods of 5, 10, and 20 µm are produced with energy densities between 0.44 and 2.6 J cm with a single laser pulse. With variation of energy density, different shapes of the arising topography are observed due to the development of the solidification front of the molten material at the maxima positions. Characterization of the surface chemistry shows that the DLIP treatment enhances the content of nitrogen of the titanium reactive layer from 3.9% up to 23.4%. The structural analysis near the titanium surface shows no changes in microstructure after the laser treatment. Contact angles between 65° and 79° are measured on both structured and turned reference surfaces. Cell viability of human osteoblasts on line-like patterned surfaces after 7 d in cultivation medium is 16% higher compared to the grit-blasted and acid-etched references. Finally, the possibility of patterning complex 3D dental implants is shown.
Textured implant surfaces with micrometer and sub-micrometer features can improve contact properties like cell adhesion and bacteria repellency. A critical point of these surfaces is their mechanical stability during implantation. Therefore, strategies capable to provide both biocompatibility for an improved implant healing and resistance to wear for protecting the functional surface are required. In this work, laser-based fabrication methods have been used to produce hierarchical patterns on titanium surfaces. Using Direct Laser Writing with a nanosecond pulsed laser, crater-like structures with a separation distance of 50 µm are produced on unpolished titanium surfaces. Directly on this texture, a hole-like pattern with 5 µm spatial period is generated using Direct Laser Interference Patterning with picosecond pulses. While the smaller features should reduce the bacterial adhesion, the larger geometry was designed to protect the smaller features from wear. On the multifunctional surface, the adherence of E. Coli bacteria is reduced by 30% compared to the untreated reference. In addition, wear test performed on the multiple-scale patterns demonstrated the possibility to protect the smaller features by the larger craters. Also, the influence of the laser treatment on the growth of a titanium oxide layer was evaluated using Energy Dispersive X-Ray Spectroscopy analysis.
Ultrashort pulsed direct laser interference patterning (DLIP) is used to generate hierarchical line‐like patterns on titanium surfaces to control cell adhesion and spreading on dental implants, thereby improving osseointegration. The DLIP structures have spatial periods of 3, 5, 10, and 17 μm. They are produced using a laser source with a pulse duration of 10 ps and cumulated energy densities between 0.1 and 78.9 J cm−2. Laser‐induced periodic surface structures (LIPSS) and submicron features are obtained on the treated samples. The DLIP treatment leads to the development of a thick titanium oxide layer, which is imaged and quantified using time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). Several days (30–56) after the laser treatment, specimens with larger spatial periods are hydrophilic, whereas samples with spatial periods of 3 μm are hydrophobic. Seeded human osteoblasts on the laser‐structured samples show 2.5 times higher cell numbers after 7 days in vitro culture compared with osteoblasts on a grit‐blasted and etched reference sample. Finally, cell adhesion to a structured 3D dental implant is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.