Computational studies have led to models to understand some classic and contemporary asymmetric reactions involving organocatalysts. The Hajos-Parrish-Eder-Sauer-Wiechert reaction and intermolecular aldol reactions as well as Mannich reactions and oxyaminations catalyzed by proline and other amino acids, and Diels-Alder reactions catalyzed by MacMillan's chiral amine organocatalysts have been studied with density functional theory. Quantitative predictions for several new catalysts and reactions are provided.
Computational investigation of the aldol reaction of benzaldehyde with acetone catalyzed by various proline derivatives and 2-azetidine carboxylic acid reveal the origins of stereoselectivities of these reactions. Structural differences between catalysts and transition states were analyzed with density functional theory geometries in order to establish the key factors that will help in the design of new catalysts.
A straightforward one-pot method for the synthesis of unreported pyrido-[2,1-a]isoindolones in excellent yield is described. Two novel isoindolones were synthesized and fully characterized. The alkyl substituents on the pyridine play...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.