Exacerbated sensitivity to mechanical stimuli that are normally innocuous or mildly painful (mechanical allodynia and hyperalgesia) occurs during inflammation and underlies painful diseases. Proteases that are generated during inflammation and disease cleave protease-activated receptor 2 (PAR 2 ) on afferent nerves to cause mechanical hyperalgesia in the skin and intestine by unknown mechanisms. We hypothesized that PAR 2 -mediated mechanical hyperalgesia requires sensitization of the ion channel transient receptor potential vanilloid 4 (TRPV4). The ability to detect mechanical stimuli allows organisms to respond to their environment. High-intensity mechanical stimuli can damage tissue and provoke pain, leading to avoidance behaviours. Inflammatory mediators enhance sensitivity to mechanical stimuli that are normally innocuous or mildly painful (mechanical allodynia or hyperalgesia, respectively), resulting in pain associated with disorders such as arthritis, inflammatory bowel disease and irritable bowel syndrome. However, the ion channels that transduce mechanical stimuli are
7 3 a r t I C l e SThe level of expression of voltage-gated calcium channels at the plasma membrane is a key regulator of calcium homeostasis in excitable cells, and of downstream effects such as calcium-dependent transcription 1,2 . Members of the high voltage-activated (HVA) calcium channel family are heteromultimeric protein complexes that contain a pore-forming α 1 subunit that defines the channel subtype, plus ancillary α 2 -δ and β subunits that not only alter the function of the α 1 subunit but also regulate the trafficking of the channel complex to the plasma membrane 3-8 . The mammalian genome encodes four different types of Cavβ subunit that have distinct spatial and temporal expression patterns [4][5][6] . With the exception of Cavβ 2a , these subunits are cytoplasmic proteins that physically bind to a region in the α 1 subunit domain I-II linker that is highly conserved among all HVA calcium channels and is termed the alpha interaction domain (AID) 7 . Crystal structure data show that the Cavβ subunit contains interacting SH3 and guanylate kinase domains, with the latter participating in high-affinity binding to the AID region [8][9][10] . The physiological consequences of this interaction are underscored by gene knockout studies showing that deletion of the Cavβ 1a or Cavβ 2a subunits causes embryonic lethality 11,12 and by findings that a premature stop mutation in Cavβ 4 causes an epileptic phenotype in mice 13 .It has been suggested that the Cavβ subunit masks an endoplasmic reticulum retention signal on the Cav2.1 α 1 subunit 14 , thereby leading to increased cell surface expression of P/Q-type channels. However, no specific endoplasmic reticulum retention motif in the AID and surrounding regions of the α 1 subunit has been identified, and removing the AID motif in the I-II linker of Cav2.1 does not increase current amplitude in the absence of Cavβ (ref. 15). Moreover, it is not clear whether different HVA calcium channel isoforms share common retention motifs. Here we show that Cav1.2 (L-type) calcium channels contain an endoplasmic reticulum retention motif in the proximal C-terminal region, and we provide evidence that the Cavβ subunit has a role in regulating proteasomal degradation of these channels. Our data show that the Cavβ subunit acts as a molecular switch that prevents the ubiquitination of the channels and their targeting to the ERAD complex and thereby regulates their expression at the plasma membrane. RESULTS Cavb regulates endoplasmic reticulum retention of Cav1.2We first performed an ELISA assay involving a Cav1.2 channel construct tagged with an extracellular hemagglutinin (HA) epitope (Fig. 1a). We compared immunoluminescence between permeabilized and nonpermeabilized cells, which allowed us to quantify the relative proportion of Cav1.2 channels that were inserted into the plasma membrane. Coexpression with the Cavβ 1b or Cavβ 2a subunit mediated a significant increase in the fraction of Cav1.2 channels at the cell surface (Fig. 1a and data not shown). This was confirmed by HA...
The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.