Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees >or= 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5-6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.
Given the ongoing decline of both pollinators and plants, it is crucial to implement effective methods to describe complex pollination networks across time and space in a comprehensive and high-throughput way. Here we tested if metabarcoding may circumvent the limits of conventional methodologies in detecting and quantifying plant-pollinator interactions. Metabarcoding experiments on pollen DNA mixtures described a positive relationship between the amounts of DNA from focal species and the number of trnL and ITS1 sequences yielded. The study of pollen loads of insects captured in plant communities revealed that as compared to the observation of visits, metabarcoding revealed 2.5 times more plant species involved in plant-pollinator interactions. We further observed a tight positive relationship between the pollen-carrying capacities of insect taxa and the number of trnL and ITS1 sequences. The number of visits received per plant species also positively correlated to the number of their ITS1 and trnL sequences in insect pollen loads. By revealing interactions hard to observe otherwise, metabarcoding significantly enlarges the spatiotemporal observation window of pollination interactions. By providing new qualitative and quantitative information, metabarcoding holds great promise for investigating diverse facets of interactions and will provide a new perception of pollination networks as a whole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.