In this paper, the first experimental demonstration of the optical correlation spectroscopy lidar (OCS-lidar) is proposed. It is a new active remote sensing methodology to measure range-resolved atmospheric gas concentrations, based on broadband laser spectroscopy and light amplitude modulation. As a first step, a numerical study is performed for OCS-lidar measurements to optimize the accuracy of the range-resolved gas concentration measurement. Then, we demonstrate the ability of the OCS-lidar methodology to monitor the water vapor in the planetary boundary layer using the 4m 720-nm absorption band. In addition to this first experimental proof, two different experimental configurations are proposed. The amplitude modulation, related to the optical correlation spectroscopy, is operated either at the emission with an active amplitude modulator before the backscattering process, or with passive optical filters on the laser backscattered light. For both configurations, range-resolved gas concentration measurements, achieved with a micro-pulse ground-based OCS-lidar, are presented. An extended discussion presents the mixing-ratio accuracy, which reaches ±1,000 ppm at a 2,000-m range for a range resolution of 200 m. The differences between the two experimental configurations are also discussed.
Carbon aerosol is now recognized as a major uncertainty on climate change and public health, and specific instruments are required to address the time and space evolution of this aerosol, which efficiently absorbs light. In this paper, we report an experiment, based on coupling lidar remote sensing with Laser-Induced-Incandescence (LII), which allows, in agreement with Planck's law, to retrieve the vertical profile of very low thermal radiation emitted by light-absorbing particles in an urban atmosphere over several hundred meters altitude. Accordingly, we set the LII-lidar formalism and equation and addressed the main features of LII-lidar in the atmosphere by numerically simulating the LII-lidar signal. We believe atmospheric LII-lidar to be a promising tool for radiative transfer, especially when combined with elastic backscattering lidar, as it may then allow a remote partitioning between strong/less light absorbing carbon aerosols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.