A mixed-valence Co(II)/Co(III) heptanuclear wheel [Co(II)3Co(III)4(L)6(MeO)6] (LH2 = 1,1,1-trifluoro-7-hydroxy-4-methyl-5-aza-hept-3-en-2-one) has been synthesized and its crystal structure determined using single-crystal X-ray diffraction. The valence state of each cobalt ion was established by bond valence sum calculations. Studies of the temperature dependence of the magnetic susceptibility and the field dependence of the magnetization evidence ferromagnetic interactions within the compound. In order to understand the magnetic properties of this Co7 wheel, we performed ab initio calculations for each cobalt fragment at the CASSCF/CASPT2 level, including spin-orbit coupling effects within the SO-RASSI approach. The four Co(III) ions were found to be diamagnetic and to give a significant temperature-independent paramagnetic contribution to the susceptibility. The spin-orbit coupling on the three Co(II) sites leads to separations of approximately 200 cm(-1) between the ground and excited Kramers doublets, placing the Co7 wheel into a weak-exchange limit in which the lowest electronic states are adequately described by the anisotropic exchange interaction between the lowest Kramers doublets on Co(II) sites. Simulation of the exchange interaction was done within the Lines model, keeping the fully ab initio treatment of magnetic anisotropy effects on individual cobalt fragments using a recently developed methodology. A good description of the susceptibility and magnetization was obtained for nearest-neighbor (J1) and next-nearest-neighbor (J2) exchange parameters (1.5 and 5.5 cm(-1), respectively). The strong ferromagnetic interaction between distant cobalt ions arises as a result of low electron-promotion energies in the exchange bridges containing Co(III) ions. The calculations showed a large value of the magnetization along the main magnetic axis (10.1 mu(B)), which is a combined effect of the ferromagnetic exchange interaction and negative magnetic anisotropy on the two marginal Co(II) sites. The lack of single-molecule magnet behavior in [Co(II)3Co(III)4(L)6(MeO)6] is explained by relatively large matrix elements of transverse magnetic moments between states of maximal magnetization of the ground Kramers doublet, evidenced by ab initio calculations, and the associated large tunneling rates between these states in the presence of dipolar transverse magnetic fields in the crystal.
The association of heptamethine cyanine cation 1(+) with various counterions A (A = Br(-), I(-), PF(6)(-), SbF(6)(-), B(C(6)F(5))(4)(-), TRISPHAT) was realized. The six different ion pairs have been characterized by X-ray diffraction, and their absorption properties were studied in polar (DCM) and apolar (toluene) solvents. A small, hard anion (Br(-)) is able to strongly polarize the polymethine chain, resulting in the stabilization of an asymmetric dipolar-like structure in the crystal and in nondissociating solvents. On the contrary, in more polar solvents or when it is associated with a bulky soft anion (TRISPHAT or B(C(6)F(5))(4)(-)), the same cyanine dye adopts preferentially the ideal polymethine state. The solid-state and solution absorption properties of heptamethine dyes are therefore strongly correlated to the nature of the counterion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.