The middle part of the Miocene Monterey Formation at Naples Beach, west of Santa Barbara, California, is predominantly composed of organic-rich mudstone interstratifi ed with phosphatic laminae. Minor lithologies include volcanic ash, dolomite, porcelanite and chert, and condensed phosphatic beds. Sediments dated as 14.3-13.5 Ma have average total organic carbon (TOC) values around 8.5 wt%, and organic carbon (OC) accumulation rates are around 565 mg/cm 2 /k.y. Sediments dated as 13.5-13 Ma are characterized by average TOC values of 12.6 wt% and OC accumulation rates of around 1130 mg/cm 2 / k.y. The interval between 13 and 10.6 Ma is marked by condensation; average TOC values are around 8.6 wt%, and OC accumulation rates diminished to around 55 mg/cm 2 /k.y. The last interval studied is dated as 10.6-9.4 Ma, and average TOC values are around 6 wt%, whereas OC accumulation rates rose again to 320 mg/cm 2 /k.y.The presence of erosional surfaces, angular unconformities, and reworked clasts and nodules suggests that bottom-current activity and gravity-fl ow deposition have been instrumental in sediment accumulation. The phosphatic laminae were precipitated at a very early stage of diagenesis during periods of nonsedimentation. They formed less permeable sedimentary lids and may as such have contributed to enhanced OC preservation. Between 13 and 10.6 Ma, the thusformed phosphatic laminae were frequently subjected to subsequent sediment winnowing and reworking, resulting in the formation of condensed phosphatic beds. Calculated P:C molar ratios suggest that (1) the measured section is highly enriched in phosphorus (P) relative to OC; (2) regeneration of organic P from organic-matter decomposition was negligible; and (3) the source of P was external, likely upwelled bottom water rich in inorganic P.In spite of good preservation conditions and correspondingly high TOC contents, the overall OC accumulation rates are moderate in comparison to those of actual high productivity areas, which is mainly due to the episodic character of depositional processes and the intervening long periods of nondeposition and sediment reworking. They preclude this section, and by extrapolation, the Monterey Formation in general from being an important OC sink during the middle Miocene. Alternatively, large OC sinks were probably created on the continent (lignite deposits) and in sedimentary depocenters, which received increasing amounts of detrital sediments due to a combination of climate change, spreading of grasslands, and the increasing importance of mountain chains such as the Himalaya. The associated high nutrient fl uxes may have been involved in the backstepping and drowning of carbonate platforms and in the generation of widespread phosphate-rich deposits during the late early and early middle Miocene.
Phosphogenesis and accumulation of phosphate were dynamic processes, which started with local phosphogenesis leading to the formation of phosphatized particles, as well as stratigraphically bound phosphogenesis leading to the formation of phosphate laminae and lenses. Phases of subsequent sediment reworking resulted in the concentration of phosphate particles in phosphate-rich layers, and repeated phases of sediment reworking and phosphogenesis ultimately resulted in the formation of the complex phosphate condensed horizons. Preservation of organic matter was favored by high productivity rates and by the development of dysaerobic bottom-water conditions. The dynamic sedimentary environment likely led to the formation of early diagenetic phosphatic lids (which may have sealed off subjacent organic-rich layers) as well as to the rapid deposition of entire layers in the form of mud flows, thereby eventually enhancing the potential of organic-matter preservation.Our new age data suggest that at the El Capitan State Beach section the intervals characterized by high TOC values and maximum TOC accumulation rates (red marl), as well as significant quantities of in situ phosphates appeared in the late middle Miocene, i.e., during and after the major cooling phase at around 14.5 Ma. This implies that deposition of phosphate and organic carbon continued well after this cooling phase, thereby underlining the observation that preservation of organic carbon in the Monterey Formation is not only dependent on climate change during the mid Miocene but also on regional conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.