This paper discusses a new method to generate self-coherent initial conditions for young substructured stellar cluster. The expansion of a uniform system allows stellar sub-structures (clumps) to grow from fragmentation modes by adiabatic cooling. We treat the system mass elements as stars, chosen according to a Salpeter mass function, and the time-evolution is performed with a collisional N-body integrator. This procedure allows to create a fully-coherent relation between the clumps' spatial distribution and the underlying velocity field. The cooling is driven by the gravitational field, as in a cosmological Hubble-Lemaître flow. The fragmented configuration has a 'fractal'like geometry but with a self-grown velocity field and mass profile. We compare the characteristics of the stellar population in clumps with that obtained from hydrodynamical simulations and find a remarkable correspondence between the two in terms of the stellar content and the degree of spatial mass-segregation. In the fragmented configuration, the IMF power index is ≈ 0.3 lower in clumps in comparison to the field stellar population, in agreement with observations in the Milky Way. We follow in time the dynamical evolution of fully fragmented and sub-virial configurations, and find a soft collapse, leading rapidly to equilibrium (timescale of 1 Myr for a ∼ 10 4 M ⊙ system). The low-concentration equilibrium implies that the dynamical evolution including massive stars is less likely to induce direct collisions and the formation of exotic objects. Low-mass stars already ejected from merging clumps are depleted in the end-result stellar clusters, which harbour a top-heavy stellar mass function.
Context. In the scope of the star formation process, it is unclear how the environment shapes the initial mass function (IMF). While observations of open clusters propose a universal picture for the IMF from the substellar domain up to a few solar masses, the young association η Chamaeleontis presents an apparent lack of low mass objects (m < 0.1 M ). Another unusual feature of this cluster is the absence of wide binaries with a separation >50 AU. Aims. We aim to test whether dynamical evolution alone can reproduce the peculiar properties of the association under the assumption of a universal IMF. Methods. We use a pure N-body code to simulate the dynamical evolution of the cluster for 10 Myr, and compare the results with observations. A wide range of values for the initial parameters are tested (number of systems, typical radius of the density distribution and virial ratio) in order to identify the initial state that would most likely lead to observations. In this context we also investigate the influence of the initial binary population on the dynamics and the possibility of having a discontinuous single IMF near the transition to the brown dwarf regime. We consider as an extreme case an IMF with no low mass systems (m < 0.1 M ). Results. The initial configurations cover a wide range of initial density, from 10 2 to 10 8 stars/pc 3 , in virialized, hot and cold dynamical state. We do not find any initial state that would evolve from a universal single IMF to fit the observations. Only when starting with a truncated IMF without any very low mass systems and no wide binaries, can we reproduce the cluster core properties with a success rate of 10% at best. Conclusions. Pure dynamical evolution alone cannot explain the observed properties of η Chamaeleontis from universal initial conditions. The lack of brown dwarfs and very low mass stars, and the peculiar binary properties (low binary fraction and lack of wide binaries), are probably the result of the star formation process in this association.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.