This review presents an overview of eutypa dieback, esca and botryosphaeria dieback, the predominant grapevine trunk diseases worldwide. It covers their symptomatologies in the trunk, leaves and berries; the characteristics of the different fungal species associated with them; and host-pathogen interactions. Here, the host-pathogen relationship is defined at the cytological, physiological and molecular levels. Currently available experimental tools for studying these diseases, both in vitro and in the field, are discussed. Finally, a progress report on their control, which, since the ban of sodium arsenite, comprises chemical, biological and ⁄ or sanitation methods, is presented.
During plant development, sugar export is determinant in multiple processes such as nectar production, pollen development and long-distance sucrose transport. The plant SWEET family of sugar transporters is a recently identified protein family of sugar uniporters. In rice, SWEET transporters are the target of extracellular bacteria, which have evolved sophisticated mechanisms to modify their expression and acquire sugars to sustain their growth. Here we report the characterization of the SWEET family of sugar transporters in Vitis vinifera. We identified 17 SWEET genes in the V. vinifera 40024 genome and show that they are differentially expressed in vegetative and reproductive organs. Inoculation with the biotrophic pathogens Erysiphe necator and Plasmopara viticola did not result in significant induction of VvSWEET gene expression. However, infection with the necrotroph Botrytis cinerea triggered a strong up-regulation of VvSWEET4 expression. Further characterization of VvSWEET4 revealed that it is a glucose transporter localized in the plasma membrane that is up-regulated by inducers of reactive oxygen species and virulence factors from necrotizing pathogens. Finally, Arabidopsis knockout mutants in the orthologous AtSWEET4 were found to be less susceptible to B. cinerea. We propose that stimulation of expression of a developmentally regulated glucose uniporter by reactive oxygen species production and extensive cell death after necrotrophic fungal infection could facilitate sugar acquisition from plant cells by the pathogen.
Liquid chromatography-diode array screening of the organic extract of the cultures of 13 isolates of the fungus Neofusicoccum parvum, the main causal agent of botryosphaeria dieback of grapevine, showed similar metabolites. One strain was selected for further chemical studies and led to the isolation and characterisation of 13 metabolites. Structures were elucidated through spectroscopic analyses, including one-and two-dimensional NMR and mass spectrometry, and through comparison to literature data. The isolated compounds belong to four different chemical families: five metabolites, namely, (À)-terremutin (1), (+)-terremutin hydrate (2), (+)-epi-sphaeropsidone (3) (À)-4-chloro-terremutin hydrate (4) and(+)-4-hydroxysuccinate-terremutin hydrate (5), belong to the family of dihydrotoluquinones; two metabolites, namely, (6S,7R) asperlin (6) (11), belong to the family of dihydroisocoumarins; and two of the metabolites, namely, 6-methyl-salicylic acid (12) and 2-hydroxypropyl salicylic acid (13), belong to the family of hydroxybenzoic acids. We determined the phytotoxic activity of the isolated metabolites through a leaf disc assay and the expression of defence-related genes in Vitis vinifera cells cv. Chardonnay cultured with (À)-terremutin (1), the most abundant metabolite. Finally, analysis of the brown stripes of grapevine wood from plants showing botryosphaeria dieback symptoms revealed the presence of two of the isolated phytotoxins. and (6R,7S)-dia-asperlin (7), belong to the family of epoxylactones; four metabolites, namely, (R)-(À)-mellein (8), (3R,4R)-4-hydroxymellein (9), (3R,4S)-4-hydroxymellein (10) (R)(À)-3-hydroxymellein
Triterpenoids present in grape cuticular waxes are of interest due to their potential role in protection against biotic stresses, their impact on the mechanical toughness of the fruit surface, and the potential industrial application of these biologically active compounds from grape pomace. The determination of the triterpenoid profile of cuticular waxes reported here supplements existing knowledge of the chemical diversity of grape, with some compounds reported in this species for the first time. Common compounds identified in eight examined cultivars grown in the Upper Rhine Valley include oleanolic acid, oleanolic and ursolic acid methyl esters, oleanolic aldehyde, α-amyrin, α-amyrenone, β-amyrin, cycloartanol, 24-methylenecycloartanol, erythrodiol, germanicol, lupeol accompanied by lupeol acetate, campesterol, cholesterol, sitosterol, stigmasterol, and stigmasta-3,5-dien-7-one, whereas 3,12-oleandione was specific for the Muscat d'Alsace cultivar. Changes in the triterpenoid content of cuticular waxes were determined at three different phenological stages: young grapes, grapes at véraison (the onset of ripening), and mature grapes. The results reveal a characteristic evolution of triterpenoid content during fruit development, with a high level of total triterpenoids in young grapes that gradually decreases with a slight increase in the level of neutral triterpenoids. This phenomenon may partially explain changes in the mechanical properties of the cuticle and possible modulations in the susceptibility to pathogens of mature grapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.