Na+-dependent transporters for glutamate (excitatory amino acid transporters, EAATs) clear extracellular glutamate in the brain and prevent excitotoxic neuronal damage. Glutamine synthetase (GS) provides metabolic support for neurones by producing the neurotrophic amino acid glutamine. EAAT and GS expression has recently been demonstrated in macrophages and microglial cells in vitro, and in two models of acute inflammation in vivo. This observation might modify our current understanding of brain inflammation, which considers activated microglia and brain macrophages as the main neurotoxic cells through their production of a variety of neurotoxins, including glutamate. EAAT and GS expression by these cells would entail neuroprotective and neurotrophic properties, counterbalancing the deleterious consequences of microglial activation. Macaque infection by the simian immunodeficiency virus (SIV) is considered the most relevant model for human acquired immunodeficiency syndrome (AIDS), including chronic inflammation of the brain at the early asymptomatic stage of the infection, followed by an AIDS-like disease where neuronal death occurs. We studied the expression of EAAT-2 and GS in the brains of three SIVmac251-infected and two noninfected cynomolgus macaques. We found that both microglia and brain macrophages expressed EAAT-2 and GS in infected primates, suggesting that these cells might, like astrocytes, clear extracellular glutamate and provide glutamine to neurones. Microglia and macrophages could thus have neuroprotective and neurotrophic properties in addition to their production of neurotoxins. This finding might explain the contrast between early intense microglial activation and the late occurrence of neuronal apoptotic cell death, which is mainly observed at the terminal stage of the disease.
It is now widely accepted that neuronal damage in HIV infection results mainly from microglial activation and involves apoptosis, oxidative stress and glutamate-mediated neurotoxicity. Glutamate toxicity acts via 2 distinct pathways: an excitotoxic one in which glutamate receptors are hyperactivated, and an oxidative one in which cystine uptake is inhibited, resulting in glutathione depletion and oxidative stress. A number of studies show that astrocytes normally take up glutamate, keeping extracellular glutamate concentration low in the brain and preventing excitotoxicity. This action is inhibited in HIV infection, probably due to the effects of inflammatory mediators and viral proteins. Other in vitro studies as well as in vivo experiments in rodents following mechanical stimulation, show that activated microglia and brain macrophages express high affinity glutamate transporters. These data have been confirmed in chronic inflammation of the brain, particularly in SIV infection, where activated microglia and brain macrophages also express glutamine synthetase. Recent studies in humans with HIV infection show that activated microglia and brain macrophages express the glutamate transporter EAAT-1 and that expression varies according to the disease stage. This suggests that, besides their recognized neurotoxic properties in HIV infection, these cells also have a neuroprotective function, and may partly make up for the inhibited astrocytic function, at least temporarily. This hypothesis might explain the discrepancy between microglial activation which occurs early in the disease, and neuronal apoptosis and neuronal loss which is a late event. In this review article, we discuss the possible neuroprotective and neurotrophic roles of activated microglia and macrophages that may be generated by the expression of high affinity glutamate transporters and glutamine synthetase, 2 major effectors of glial glutamate metabolism, and the implications for HIV-induced neuronal dysfunction, the underlying cause of HIV dementia.
We quantified putamen and prefrontal cortex metabolites in macaques with simian immunodeficiency virus infection and searched for virological and histological correlates. Fourteen asymptomatic macaques infected since 8-78 months (median: 38) were compared with eight uninfected ones. Absolute concentrations of acetate, alanine, aspartate, choline, creatine, GABA, glutamate, glutamine, lactate, myo-inositol, N-acetylaspartate, taurine and valine were determined by ex vivo proton magnetic resonance spectroscopy. Glutamate concentration in the CSF was determined by HPLC. Gliosis was assessed by glial fibrillary acidic protein and CD68 immunohistochemistry. Glutamate concentration was slightly increased in the prefrontal cortex (19%, p ¼ 0.0152, t-test) and putamen (13%, p ¼ 0.0354, t-test) of the infected macaques, and was unaffected in the CSF. Myo-inositol concentration was increased in the prefrontal cortex only (27%, p ¼ 0.0136). The concentrations of glutamate and myoinositol in the prefrontal cortex were higher in the animals with marked or intense microgliosis (p ¼ 0.0114). The other studied metabolites, including N-acetylaspartate, were not altered. Glutamate concentration may thus increase in the cerebral parenchyma in asymptomatic animals, but is not accompanied by a detectable decrease in N-acetylaspartate concentration (neuronal dysfunction). Thus, there are probably compensatory mechanisms that may limit glutamate increase and/or counterbalance its effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.