Abstract. For more than two decades, research groups in hydrology, ecology, soil science, and biogeochemistry have performed cryogenic water extractions (CWEs) for the analysis of δ2H and δ18O of soil water. Recent studies have shown that extraction conditions (time, temperature, and vacuum) along with physicochemical soil properties may affect extracted soil water isotope composition. Here we present results from the first worldwide round robin laboratory intercomparison. We test the null hypothesis that, with identical soils, standards, extraction protocols, and isotope analyses, cryogenic extractions across all laboratories are identical. Two standard soils with different physicochemical characteristics along with deionized (DI) reference water of known isotopic composition were shipped to 16 participating laboratories. Participants oven-dried and rewetted the soils to 8 and 20 % gravimetric water content (WC), using the deionized reference water. One batch of soil samples was extracted via predefined extraction conditions (time, temperature, and vacuum) identical to all laboratories; the second batch was extracted via conditions considered routine in the respective laboratory. All extracted water samples were analyzed for δ18O and δ2H by the lead laboratory (Global Institute for Water Security, GIWS, Saskatoon, Canada) using both a laser and an isotope ratio mass spectrometer (OA-ICOS and IRMS, respectively). We rejected the null hypothesis. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to soil type and soil water content with mean differences compared to the reference water ranging from +18.1 to −108.4 ‰ for δ2H and +11.8 to −14.9 ‰ for δ18O across all laboratories. In addition, differences were observed between OA-ICOS and IRMS isotope data. These were related to spectral interferences during OA-ICOS analysis that are especially problematic for the clayey loam soils used. While the types of cryogenic extraction lab construction varied from manifold systems to single chambers, no clear trends between system construction, applied extraction conditions, and extraction results were found. Rather, observed differences in the isotope data were influenced by interactions between multiple factors (soil type and properties, soil water content, system setup, extraction efficiency, extraction system leaks, and each lab's internal accuracy). Our results question the usefulness of cryogenic extraction as a standard for water extraction since results are not comparable across laboratories. This suggests that defining any sort of standard extraction procedure applicable across laboratories is challenging. Laboratories might have to establish calibration functions for their specific extraction system for each natural soil type, individually.
Recent studies using water-stable isotopes (δ 18 O and δ 2 H) have suggested an ecohydrological separation of water flowing to streams or recharging groundwater and water used by trees, known as the 'two water worlds' (TWW) hypothesis. In this study, we measured water isotopic composition in precipitation [open field and throughfall, i.e. local meteoric water line (LMWL)] and the mobile water compartment (i.e. stream and soil solution), bulk soil water and xylem water over a period of 1.5 years in two headwater catchments: NF, covered with old growth native evergreen forest (Aetoxicon punctatum, Laureliopsis philippiana and Eucriphya cordifolia), and EP, covered with 4 and 16-year-old Eucalyptus nitens stands. Our results show that precipitation, stream and soil solution plot approximately along the LMWL, while xylem waters from all studied tree species plot below the LMWL, supporting the TWW hypothesis. However, we also found evidence of ecohydrological connectivity during the wet season, likely controlled by the amount of antecedent precipitation. These observations hold for all investigated tree species. On both sites, a different precipitation source for stream and xylem water was observed. However, in EP, bulk soil showed a similar precipitation source as xylem water from both E. nitens stands. This suggests that E. nitens may use water that is recharging the bulk soil compartment. We conclude that under a rainy temperate climate, the TWW hypothesis is temporal and does not apply during wet seasons. Stream and soil solution water: mobile water compartmentStream water was collected fortnightly at NF and EP (n = 25 and 22, respectively). While δ 2 H showed differences (median: À38.0‰ and À36.4‰ for NF and EP, respectively; p < 0.001 using M-W), no differences 4231 ECOHYDROLOGICAL ASSESMENT
Abstract. For more than two decades, research groups in hydrology, ecology, soil science and biogeochemistry have performed cryogenic water extractions for the analysis of δ2H and δ18O of soil water. Recent studies have shown that extraction conditions (time, temperature, and vacuum) along with physicochemical soil properties may affect extracted soil water isotope results. Here we present results from the first worldwide round robin laboratory intercomparison. We test the null hypothesis that with identical soils, standards, extraction protocols and isotope analyses, cryogenic extractions across all laboratories are identical. Two ‘standard soils’ with different physicochemical characteristics along with deionized reference water of known isotopic composition, were shipped to 16 participating laboratories. Participants oven-dried and rewetted the soils to 8 % and 20 % gravimetric water content, using the deionized reference water. One batch of soil samples was extracted via pre-defined extraction conditions (time, temperature, and vacuum) identical to all laboratories; the second batch was extracted via conditions considered routine in the respective laboratory. All extracted water samples were analyzed for δ18O and δ2H by the lead laboratory (Global Institute for Water Security, GIWS, Saskatoon, CA) using both a laser and an isotope ratio mass spectrometer (OA-ICOS and IRMS, respectively). We rejected the null hypothesis. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to soil type and soil water content with mean differences to the reference water ranging from +18.1 ‰ to −108.4 ‰ for δ2H and +11.8 ‰ to −14.9 ‰ for δ18O across all laboratories. In addition, differences were observed between OA-ICOS and IRMS isotope data. These were related to spectral interferences during OA-ICOS analysis that are especially problematic for the clayey loam soils used. While the types of cryogenic extraction lab construction varied from manifold systems to single chambers, no clear trends between system construction, applied extraction conditions, and extraction results were found. Rather, differences between isotope results were influenced by interactions between multiple factors (soil type and properties, soil water content, system setup, extraction efficiency, extraction system leaks, and each lab’s internal accuracy). Our results question the usefulness of cryogenic extraction as a standard for water extraction since results are not comparable across laboratories. This suggests that defining any sort of standard extraction procedure applicable across laboratories is challenging. Laboratories might have to establish calibration functions for their specific extraction system for each natural soil type, individually.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.