Epidemiological studies are providing strong evidence on beneficial health effects from dietary measures, leading scientists to actively investigate which foods and which specific agents in the diet can prevent diseases. Public health officers and medical experts should collaborate toward the design of disease prevention diets for nutritional intervention. Functional foods are emerging as an instrument for dietary intervention in disease prevention. Functional food products are technologically developed ingredients with specific health benefits. Among promising sources of functional foods and chemopreventive diets of interest, microalgae are gaining worldwide attention, based on their richness in high-value products, including carotenoids, proteins, vitamins, essential amino acids, omega-rich oils and, in general, anti-inflammatory and antioxidant compounds. Beneficial effects of microalgae on human health and/or wellness could in the future be useful in preventing or delaying the onset of cancer and cardiovascular diseases. During the past decades, microalgal biomass was predominately used in the health food market, with more than 75% of the annual microalgal biomass production being employed for the manufacture of powders, tablets, capsules or pastilles. In this review, we report and discuss the present and future role of microalgae as marine sources of functional foods/beverages for human wellbeing, focusing on perspectives in chemoprevention. We dissected this topic by analyzing the different classes of microalgal compounds with health outputs (based on their potential chemoprevention activities), the biodiversity of microalgal species and how to improve their cultivation, exploring the perspective of sustainable food from the sea.
Predicting responses of plankton to variations in essential nutrients is hampered by limited in situ measurements, a poor understanding of community composition, and the lack of reference gene catalogs for key taxa. Iron is a key driver of plankton dynamics and, therefore, of global biogeochemical cycles and climate. To assess the impact of iron availability on plankton communities, we explored the comprehensive bio‐oceanographic and bio‐omics data sets from Tara Oceans in the context of the iron products from two state‐of‐the‐art global scale biogeochemical models. We obtained novel information about adaptation and acclimation toward iron in a range of phytoplankton, including picocyanobacteria and diatoms, and identified whole subcommunities covarying with iron. Many of the observed global patterns were recapitulated in the Marquesas archipelago, where frequent plankton blooms are believed to be caused by natural iron fertilization, although they are not captured in large‐scale biogeochemical models. This work provides a proof of concept that integrative analyses, spanning from genes to ecosystems and viruses to zooplankton, can disentangle the complexity of plankton communities and can lead to more accurate formulations of resource bioavailability in biogeochemical models, thus improving our understanding of plankton resilience in a changing environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.