To identify the mechanisms underlying muscle aging, we have undertaken a high-resolution differential proteomic analysis of gastrocnemius muscle in young adults, mature adults, and old LOU/c/jall rats. Two-dimensional gel electrophoresis and subsequent MALDI-ToF mass spectrometry analyses led to the identification of 40 differentially expressed proteins. Strikingly, most differences characterized old (30-month) animals, whereas young (7-month) and mature (18-month) adults exhibited similar patterns of expression. Important modifications in contractile (actin, myosin light-chains, troponins-T) and cytoskeletal (desmin, tubulin) proteins, and in essential regulatory proteins (gelsolin, myosin binding proteins, CapZ-beta, P23), likely account for dysfunctions in old muscle force generation and speed of contraction. Other features support decreases in cytosolic (triose-phosphate isomerase, enolase, glycerol-3-P dehydrogenase, creatine kinase) and mitochondrial (isocitrate dehydrogenase, cytochrome-c oxidase) energy metabolisms. Muscle aging is often associated with increased oxidative stress. Accordingly, we observed differential regulation of molecular chaperones (hsp20, hsp27, reticuloplasmin ER60) and of proteins implicated in reactive aldehyde detoxification (aldehyde dehydrogenase, glutathione transferase, glyoxalase). We further noticed up-regulation of proteins involved in transcriptional elongation (RNA capping protein) and RNA-editing (Apobec2). Most of these proteins were previously unrecognized as differentially expressed in old muscles, and they represent novel starting points for elucidating the mechanisms of muscle aging.
Within a population of Charolais young bulls, two extreme groups of longissimus thoracis muscle samples, classified according to Warner-Bratzler shear force (WBSF) of 55 degrees C grilled meat, were analyzed by 2D-electrophoresis. Muscle analyses were performed on 4 bulls of the "tender" group (WBSF=27.7+/-4.8 N) and 4 bulls of the "tough" group (WBSF=41.2+/-6.1 N), at 3 post-mortem times: D0, samples taken within 10 min post-mortem; D5 and D21, samples kept at 4 degrees C under vacuum during 5 and 21 days. Proteins of muscle samples were separated in two fractions based on protein solubility in Tris buffer: "soluble" and "insoluble". Proteins of both fractions were separated by 2D-electrophoresis. Evolution of spots during the 3 post-mortem times was analyzed by hierarchical classification (HCA). Three clusters of proteins presenting similar evolution profiles provided accurate classification of post-mortem times and showed the translocation of some chaperone proteins and glycolytic enzymes from the soluble fraction to the insoluble fraction between D0 and D5. Cellular structure dismantlement and proteolysis was observed at D21. Effect of group ("tender" vs "tough") on spot intensities was tested by ANOVA. At D0, higher quantity of proteins of the inner and outer membrane of mitochondria was found in the tender group suggesting a more extensive degradation of mitochondria that may be related to the apoptotic process.
The large individual variation in meat quality seen both within and between animals is not fully understood. Consequently, our long-term goal is to identify reliable proteins which control or determine bovine meat quality. Using a proteomic approach, bovine skeletal muscle samples were analyzed by two-dimensional gel electrophoresis (2-DE) using an immobilized pH 4-7 gradient in the first dimension and mass spectrometry. We first tested the reproducibility of the method. These experiments showed slightly greater intersample than intrasample variability. In order to evaluate the type of visualized proteins in 2-DE, we initiated the construction of a protein reference map of bovine Semitendinosus muscle. In total, 129 protein spots corresponding to 75 different gene products were identified. Of these proteins, the largest portion is involved in metabolism (25.5%), cell structure (17%), cell defense (16%) and contractile apparatus (14.5%). One quarter of the identified proteins are represented by two or several protein spots and multiple isoforms of troponin T are present. Peptide mass fingerprint results indicate that these isoforms are partly generated by alternative splicing. The data presented here are an important step for further proteome analyses on bovine muscle. This may lead to progress in understanding the mechanisms controlling postmortem muscle metabolism and meat quality.
Two-dimensional electrophoresis was used to investigate sarcoplasmic protein expression in pig Semimembranosus muscles sampled 20 min after slaughter. Two groups (light and dark) of 12 animals were selected from 1000 pigs, based on meat L values measured 36 h postmortem. Twenty-two proteins or fragments (p < 0.05) were differentially expressed. Muscles leading to darker meat had a more oxidative metabolism, indicated by more abundant mitochondrial enzymes of the respiratory chain, hemoglobin, and chaperone or regulator proteins (HSP27, alphaB-crystallin, and glucose-regulated protein 58 kDa). Conversely, enzymes of glycolysis were overexpressed in the lighter group. Such samples were also characterized by higher levels of glutathione S-transferase omega, which can activate the RyR calcium channels, and higher levels of cyclophilin D. This protein pattern is likely to have severe implications on postmortem metabolism, namely, acceleration of ATP depletion and pH fall and subsequent enhanced protein denaturation, well-known to induce discoloration.
Saccharomyces cerevisiae plays a primordial role in alcoholic fermentation and has a vast worldwide application in the production of fuel-ethanol, food and beverages. The dominance of S. cerevisiae over other microbial species during alcoholic fermentations has been traditionally ascribed to its higher ethanol tolerance. However, recent studies suggested that other phenomena, such as microbial interactions mediated by killer-like toxins, might play an important role. Here we show that S. cerevisiae secretes antimicrobial peptides (AMPs) during alcoholic fermentation that are active against a wide variety of wine-related yeasts (e.g. Dekkera bruxellensis) and bacteria (e.g. Oenococcus oeni). Mass spectrometry analyses revealed that these AMPs correspond to fragments of the S. cerevisiae glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein. The involvement of GAPDH-derived peptides in wine microbial interactions was further sustained by results obtained in mixed cultures performed with S. cerevisiae single mutants deleted in each of the GAPDH codifying genes (TDH1-3) and also with a S. cerevisiae mutant deleted in the YCA1 gene, which codifies the apoptosis-involved enzyme metacaspase. These findings are discussed in the context of wine microbial interactions, biopreservation potential and the role of GAPDH in the defence system of S. cerevisiae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.