We develop an efficient, general-purpose, blind/noreference image quality assessment (NR-IQA) algorithm using a natural scene statistics (NSS) model of discrete cosine transform (DCT) coefficients. The algorithm is computationally appealing, given the availability of platforms optimized for DCT computation. The approach relies on a simple Bayesian inference model to predict image quality scores given certain extracted features. The features are based on an NSS model of the image DCT coefficients. The estimated parameters of the model are utilized to form features that are indicative of perceptual quality. These features are used in a simple Bayesian inference approach to predict quality scores. The resulting algorithm, which we name BLIINDS-II, requires minimal training and adopts a simple probabilistic model for score prediction. Given the extracted features from a test image, the quality score that maximizes the probability of the empirically determined inference model is chosen as the predicted quality score of that image. When tested on the LIVE IQA database, BLIINDS-II is shown to correlate highly with human judgments of quality, at a level that is competitive with the popular SSIM index.
Abstract-We propose a blind (no reference or NR) video quality evaluation model that is nondistortion specific. The approach relies on a spatio-temporal model of video scenes in the discrete cosine transform domain, and on a model that characterizes the type of motion occurring in the scenes, to predict video quality. We use the models to define video statistics and perceptual features that are the basis of a video quality assessment (VQA) algorithm that does not require the presence of a pristine video to compare against in order to predict a perceptual quality score. The contributions of this paper are threefold. 1) We propose a spatio-temporal natural scene statistics (NSS) model for videos. 2) We propose a motion model that quantifies motion coherency in video scenes. 3) We show that the proposed NSS and motion coherency models are appropriate for quality assessment of videos, and we utilize them to design a blind VQA algorithm that correlates highly with human judgments of quality. The proposed algorithm, called video BLIINDS, is tested on the LIVE VQA database and on the EPFL-PoliMi video database and shown to perform close to the level of top performing reduced and full reference VQA algorithms.
Abstract-The development of general-purpose no-reference approaches to image quality assessment still lags recent advances in full-reference methods. Additionally, most no-reference or blind approaches are distortion-specific, meaning they assess only a specific type of distortion assumed present in the test image (such as blockiness, blur, or ringing). This limits their application domain. Other approaches rely on training a machine learning algorithm. These methods however, are only as effective as the features used to train their learning machines. Towards ameliorating this we introduce the BLIINDS index (BLind Image Integrity Notator using DCT Statistics) which is a no-reference approach to image quality assessment that does not assume a specific type of distortion of the image. It is based on predicting image quality based on observing the statistics of local discrete cosine transform coefficients, and it requires only minimal training. The method is shown to correlate highly with human perception of quality.
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Lossy image compression techniques allow arbitrarily high compression rates but at the price of poor image quality. We applied maximum likelihood difference scaling to evaluate image quality of nine images, each compressed via vector quantization to ten different levels, within two different color spaces, RGB and CIE 1976 L * a * b * . In L * a * b * space, images could be compressed on average by 32% more than in RGB space, with little additional loss in quality. Further compression led to marked perceptual changes. Our approach permits a rapid, direct measurement of the consequences of image compression for human observers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.