The development of complex in vitro hepatic systems and artificial liver devices has been hampered by the lack of reliable sources for relevant cell types, such as hepatic stellate cells (HSCs). Here we report efficient differentiation of human pluripotent stem cells into HSC-like cells (iPSC-HSCs). iPSC-HSCs closely resemble primary human HSCs at the transcriptional, cellular, and functional levels and possess a gene expression profile intermediate between that of quiescent and activated HSCs. Functional analyses revealed that iPSC-HSCs accumulate retinyl esters in lipid droplets and are activated in response to mediators of wound healing, similar to their in vivo counterparts. When maintained as 3D spheroids with HepaRG hepatocytes, iPSC-HSCs exhibit a quiescent phenotype but mount a fibrogenic response and secrete pro-collagen in response to known stimuli and hepatocyte toxicity. Thus, this protocol provides a robust in vitro system for studying HSC development, modeling liver fibrosis, and drug toxicity screening.
ABSTRACT:HepaRG cells possess the unique property to differentiate in vitro and to express various functions of mature hepatocytes, including the major cytochromes P450 (P450s). In the present study, we carefully analyzed mRNA expression and activity of the major P450s and their responsiveness to three prototypical inducers, phenobarbital, rifampicin, and omeprazole, in differentiated HepaRG cell cultures over a 4-week period after low and high seeding. Only minor differences were observed in P450 activities when measured by two cocktails of probe substrates, probably related to the choice and/or concentration of substrates. Similar results were obtained from the two cell seeding conditions. Expression and activities of several P450s were dimethyl sulfoxidedependent. However, basal P450 expression and activities as well as their responsiveness to the prototypical inducers were well maintained over the 4-week period, and a good correlation was observed between transcript levels and corresponding activities. Thus, CYP1A2, CYP2B6, and CYP3A4 were found to accurately respond to their respective prototypical inducers, i.e., omeprazole, phenobarbital, and rifampicin. Likewise, basal expression of several phase II enzymes, transporters, and nuclear receptors, and response to inducers were also well preserved. More genes were found to be induced in HepaRG cells than in primary human hepatocytes, and no marked variation was noticed between the different passages. Taken together, these data support the conclusion that HepaRG cells represent a promising surrogate to primary human hepatocytes for xenobiotic metabolism and toxicity studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.