Detailed and complete data on physical assets are required in order to adequately assess environment-related risk and impact exposure and the diffusion of these risks and impacts through the financial system. Investors need to know where the physical assets (e.g., power plant, factory, farm) are located of companies in their portfolios, and what their polluting characteristics are. This is essential to manage these environment-related risks and to channel investments to more sustainable alternatives. At present, data on physical assets is typically incomplete, inaccurate, or not released in a timely manner. As a result, key stakeholders including asset owners, asset managers, regulators and policymakers are frequently forced to make crucial decisions with incomplete information. Accurate and comprehensive global asset-level databases are a prerequisite for meaningful innovation in green and digital finance. They provide the link between the financial system and the "real economy" and allows the wealth of EO datasets and insights that we have available to be made actionable for sustainable finance decision making. We created a framework to derive a global database of pollutant plants, such as cement, iron, and steel, which represent about 15% of the global CO2 emissions. Our solution makes use of state-of-the-art deep learning architectures coupled with Earth observation data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.