We measure the labor-demand effects of two simultaneous forms of technological change—automation of production processes and consolidation of parts. We collect detailed shop-floor data from four semiconductor firms with different levels of automation and consolidation. Using the O*NET survey instrument, we collect novel task data for operator laborers that contains process-step level skill requirements, including operations and control, near vision, and dexterity requirements. We then use an engineering process model to separate the effects of the distinct technological changes on these process tasks and operator skill requirements. Within an occupation, we show that aggregate measures of technological change can mask the opposing skill biases of multiple simultaneous technological changes. In our empirical context, automation polarizes skill demand as routine, codifiable tasks requiring low and medium skills are executed by machines instead of humans, whereas the remaining and newly created human tasks tend to require low and high skills. Consolidation converges skill demand as formerly divisible low and high skill tasks are transformed into a single indivisible task with medium skill requirements and higher cost of failure. We conclude by developing a new theory for how the separability of tasks mediates the effect of technology change on skill demand by changing the divisibility of labor.
Nonassembled products, which are produced from a raw material and post-processed to a final form without any assembly steps, form a large and potentially growing share of the manufacturing sector. However, the design for manufacturing literature has largely focused on assembled products, and does not necessarily apply to nonassembled products. In this paper, we review the literature on design for nonassembly (DFNA) and the broader literature on design for manufacturing that has design guidelines and metrics applicable to nonassembled products, including both monolithic single-part products and nonassembly mechanisms. Our review focuses on guidelines that apply across multiple manufacturing processes. We identify guidelines and metrics that seek to reduce costs as well as provide differentiated products across a product family. We cluster the guidelines using latent semantic analysis and find that existing DFNA guidelines fall into four main categories pertaining to: (1) manufacturing process, (2) material, (3) tolerance, and (4) geometry. We also identify existing product family metrics that can be modified for nonassembled products to measure some aspects of these categories. Finally, we discuss possible future research directions to more accurately characterize the relationships between design variables and manufacturing costs, including investigating factors related to the complexity of operations at particular process steps and across process steps.
In this paper, we review the literature on design for nonassembly (DFNA) and the broader literature on design for manufacturing that has design guidelines and metrics applicable to nonassembled products, including both monolithic single-part products and nonassembly mechanisms. Our review focuses on guidelines that apply across multiple manufacturing processes. We identify guidelines and metrics that seek to reduce costs as well as provide differentiated products across a product family. We find that existing DFNA guidelines fall into four main categories pertaining to: (1) geometry and size, (2) material, (3) production process, and (4) clearance and tolerances. We also identify existing product family metrics that can be modified for nonassembled products to capture some aspects of these categories. Finally, we discuss possible future research directions to more accurately characterize the relationships between design variables and manufacturing costs, including investigating factors related to the complexity of operations at particular process steps and across process steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.