Metastasis is a multistep process during which cancer cells disseminate from the site of primary tumors and establish secondary tumors in distant organs. In a search for key regulators of metastasis in a murine breast tumor model, we have found that the transcription factor Twist, a master regulator of embryonic morphogenesis, plays an essential role in metastasis. Suppression of Twist expression in highly metastatic mammary carcinoma cells specifically inhibits their ability to metastasize from the mammary gland to the lung. Ectopic expression of Twist results in loss of E-cadherin-mediated cell-cell adhesion, activation of mesenchymal markers, and induction of cell motility, suggesting that Twist contributes to metastasis by promoting an epithelial-mesenchymal transition (EMT). In human breast cancers, high level of Twist expression is correlated with invasive lobular carcinoma, a highly infiltrating tumor type associated with loss of E-cadherin expression. These results establish a mechanistic link between Twist, EMT, and tumor metastasis.
Purpose: To investigate the clinical relevance of the recently characterized human oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) in human breast cancer. Experimental Design: CIP2A expression (mRNA and protein) was measured in three different sets of human mammary tumors and compared with clinicopathologic variables. The functional role of CIP2A in breast cancer cells was evaluated by small interfering RNA-mediated depletion of the protein followed by an analysis of cell proliferation, migration, anchorage-independent growth, and xenograft growth. Results: CIP2A mRNA is overexpressed (n = 159) and correlates with higher ScarffBloom-Richardson grades (n = 251) in samples from two independent human breast cancer patients. CIP2A protein was found to be overexpressed in 39% of 33 human breast cancer samples. Furthermore, CIP2A mRNA expression positively correlated with lymph node positivity of the patients and with the expression of proliferation markers and p53 mutations in the tumor samples. Moreover, CIP2A protein expression was induced in breast cancer mouse models presenting mammary gland-specific depletion of p53 and either BRCA1 or BRCA2. Functionally, CIP2A depletion was shown to inhibit the expression of its target protein c-Myc. Loss of CIP2A also inhibited anchorageindependent growth in breast cancer cells. Breast cancer is the most common malignancy that affects women, with >1 million cases occurring worldwide annually. Further, breast cancer is the most important cause of cancerrelated deaths in women. However, the understanding of the molecular mechanisms that maintain the malignant growth of breast cancer cells remains incomplete (1).The oncogenic transformation of human cells requires the perturbation of a distinct set of oncogenes and tumor suppressors (2). It was recently shown that the tumor suppressor activity of protein phosphatase 2A (PP2A) prevents the transformation of human breast epithelial cells (3). The role of PP2A as a relevant breast cancer tumor suppressor was further strengthened by a recent study showing that somatic mutations occurred in one of the subunits of the functional PP2A trimer (PP2A Aβ) in 13% of human breast cancers and that PP2A trimers containing this mutation fail to suppress the oncogenic activity of RalA (4, 5). In
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.