Reliable and efficient perception and reasoning in dynamic and densely cluttered environments are still major challenges for driver assistance systems. Most of today's systems use target tracking algorithms based on object models. They work quite well in simple environments such as freeways, where few potential obstacles have to be considered. However, these approaches usually fail in more complex environments featuring a large variety of potential obstacles, as is usually the case in urban driving situations. In this paper, we propose a new approach for robust perception and risk assessment in highly dynamic environments. This approach is called Bayesian occupancy filtering; it basically combines a four-dimensional occupancy grid representation of the obstacle state space with Bayesian filtering techniques.
A prerequisite to the design of future Advanced Driver Assistance Systems for cars is a sensing system providing all the information required for high-level driving assistance tasks. Carsense is a European project whose purpose is to develop such a new sensing system. It will combine different sensors (laser, radar and video) and will rely on the fusion of the information coming from these sensors in order to achieve better accuracy, robustness and an increase of the information content. This paper demonstrates the interest of using probabilistic reasoning techniques to address this challenging multi-sensor data fusion problem. The approach used is called Bayesian Programming. It is a general approach based on an implementation of the Bayesian theory. It was introduced first to design robot control programs but its scope of application is much broader and it can be used whenever one has to deal with problems involving uncertain or incomplete knowledge.
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.