Laser mediated remote release of encapsulated fluorescently labeled polymers from nanoengineered polyelectrolyte multilayer capsules containing gold sulfide core/gold shell nanoparticles in their walls is observed in real time on a single capsule level. We have developed a method for measuring the temperature increase and have quantitatively investigated the influence of absorption, size, and surface density of metal nanoparticles using an analytical model. Experimental measurements and numerical simulations agree with the model. The treatment presented in this work is of general nature, and it is applicable to any system where nanoparticles are used as absorbing centers. Potential biomedical applications are highlighted.
Hollow polyelectrolyte microcapsules made of poly(allylamine hydrochloride) and sodium poly(styrene sulfonate), templated on various cores, manganese and calcium carbonate particles or polystyrene latexes, were investigated. The polyelectrolyte multilayers respond to a change of pH, leading to a swelling of the capsules in basic conditions and a further shrinking when the pH is reduced to acidic. The nature of the core and the subsequent dissolution process have an influence on this pH responsiveness, and the structuring effect of tetrahydrofuran on the multilayers has been demonstrated. Increasing the molecular weight of the polymers or the number of layers causes also a rigidification of the structure and modifies the pH response.
Summary: We investigated microcapsules composed of the weak polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) assembled on calcium carbonate cores. These capsules are stable in the pH range from 2.5 to 11.5, undergoing reversible swelling in the pH interval from 2.7 to 2.6. Capsule swelling occurs at a protonation degree above 90%. The pH‐dependent size variation of PAH/PMA capsules is blocked after crosslinking of the polyelectrolyte layers.Schematic of the swelling and de‐swelling of the capsules with changing pH.imageSchematic of the swelling and de‐swelling of the capsules with changing pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.