The extent of changes in genetic diversity and life-history traits associated with farming was investigated in the haploid-diploid red alga, Gracilaria chilensis, cultivated in Chile. This alga belongs to one of the most frequently cultivated seaweed genera around the world. Fifteen farmed populations, 11 wild populations, and two subspontaneous populations were sampled along the Chilean coast. The frequency of reproductive versus vegetative individuals and of haploid versus diploid individuals was checked in each population. In addition, the distribution of genetic variation in wild and cultivated populations was analyzed using six microsatellite markers. Our results first demonstrated that farmed populations are maintained almost exclusively by vegetative propagation. Moreover, the predominance of diploid individuals in farms showed that farming practices had significantly modified life-history traits as compared to wild populations. Second, the expected reduction in genetic diversity due to a cultivation bottleneck and subsequent clonal propagation was detected in farms. Finally, our study suggested that cultural practices in the southern part of the country contributed to the spread of selected genotypes at a local scale. Altogether, these results document for the first time that involuntary selection could operate during the first step of domestication in a marine plant.
Connectivity among populations determines the dynamics and evolution of populations, and its assessment is essential in ecology in general and in conservation biology in particular. The robust basis of any ecological study is the accurate delimitation of evolutionary units, such as populations, metapopulations and species. Yet a disconnect still persists between the work of taxonomists describing species as working hypotheses and the use of species delimitation by molecular ecologists interested in describing patterns of gene flow. This problem is particularly acute in the marine environment where the inventory of biodiversity is relatively delayed, while for the past two decades, molecular studies have shown a high prevalence of cryptic species. In this study, we illustrate, based on marine case studies, how the failure to recognize boundaries of evolutionary-relevant unit leads to heavily biased estimates of connectivity. We review the conceptual framework within which species delimitation can be formalized as falsifiable hypotheses and show how connectivity studies can feed integrative taxonomic work and vice versa. Finally, we suggest strategies for spatial, temporal and phylogenetic sampling to reduce the probability of inadequately delimiting evolutionary units when engaging in connectivity studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.