Anomalies are unusual and significant changes in a network's traffic levels, which can often span multiple links. Diagnosing anomalies is critical for both network operators and end users. It is a difficult problem because one must extract and interpret anomalous patterns from large amounts of high-dimensional, noisy data.In this paper we propose a general method to diagnose anomalies. This method is based on a separation of the high-dimensional space occupied by a set of network traffic measurements into disjoint subspaces corresponding to normal and anomalous network conditions. We show that this separation can be performed effectively by Principal Component Analysis.Using only simple traffic measurements from links, we study volume anomalies and show that the method can: (1) accurately detect when a volume anomaly is occurring; (2) correctly identify the underlying origin-destination (OD) flow which is the source of the anomaly; and (3) accurately estimate the amount of traffic involved in the anomalous OD flow.We evaluate the method's ability to diagnose (i.e., detect, identify, and quantify) both existing and synthetically injected volume anomalies in real traffic from two backbone networks. Our method consistently diagnoses the largest volume anomalies, and does so with a very low false alarm rate.
The increasing practicality of large-scale flow capture makes it possible to conceive of traffic analysis methods that detect and identify a large and diverse set of anomalies. However the challenge of effectively analyzing this massive data source for anomaly diagnosis is as yet unmet. We argue that the distributions of packet features (IP addresses and ports) observed in flow traces reveals both the presence and the structure of a wide range of anomalies. Using entropy as a summarization tool, we show that the analysis of feature distributions leads to significant advances on two fronts: (1) it enables highly sensitive detection of a wide range of anomalies, augmenting detections by volume-based methods, and (2) it enables automatic classification of anomalies via unsupervised learning. We show that using feature distributions, anomalies naturally fall into distinct and meaningful clusters. These clusters can be used to automatically classify anomalies and to uncover new anomaly types. We validate our claims on data from two backbone networks (Abilene and Geant) and conclude that feature distributions show promise as a key element of a fairly general network anomaly diagnosis framework.
Abstract-Studying transfer opportunities between wireless devices carried by humans, we observe that the distribution of the inter-contact time, that is the time gap separating two contacts of the same pair of devices, exhibits an heavy tail such as one of a power law, over a large range of value. This observation is confirmed on six distinct experimental data sets. It is at odds with the exponential decay implied by most mobility models. In this paper, we study how this new characteristic of human mobility impacts a class of previously proposed forwarding algorithms. We use a simplified model based on the renewal theory to study how the parameters of the distribution impact the delay performance of these algorithms. We make recommendation for the design of well funded opportunistic forwarding algorithm, in the context of human carried device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.