As aging continues to grow in our society, sarcopenia and associated fall risk is considered a public health problem since falling is the third cause of chronic disability. Falls are negatively related to functionality and independence and positively associated with morbidity and mortality. The cost of treatment of secondary injuries related to falls is high. For example, one in ten fall incidents leads to bone fractures and several other comorbidities. As demonstrated by several experimental studies, adopting a more active lifestyle is critical for reducing the number of fall episodes and their consequences. Therefore, it is essential to debate the proven physical exercise methods to reduce falls and fall-related effects. Since muscle mass, muscle strength, bone density, and cartilage function may play significant roles in daily activities, resistance training may positively and significantly affect the elderly. This narrative review aimed to examine current evidence on existing resistance training using resistance machines and bodyweight or low-cost equipment for the elderly and how they are related to falls and fall-related consequences. We provide theoretical links between aging, sarcopenia, and falls linking to resistance training and offer practical suggestions to exercise professionals seeking to promote regular physical exercise to promote quality of life in this population. Exercise programs focusing on strength may significantly influence muscle mass and muscle strength, minimizing functional decline and risk of falling. Resistance training programs should be customized to each elderly according to age, sex, and other fundamental and individual aspects. This narrative review provides evidence to support recommendations for practical resistance training in the elderly related to intensity and volume. A properly designed resistance training program with adequate instructions and technique is safe for the elderly. It should include an individualized approach based on existing equipment (i.e., body weight, resistance machines). Existing literature shows that exercise performance towards 2–3 sets of 1–2 exercises per major muscle group, performing 5–8 repetitions or achieving intensities of 50–80% of 1RM, 2–3 times per week should be recommended, followed by training principles such as periodization and progression. Bearing this in mind, health and exercise professionals should combine efforts focusing on efficient strategies to reduce falls among the elderly and promote higher experiences of well-being at advanced stages in life.
No leucine metabolite resulted in any ergogenic effects on any outcome variable. Supplementation with leucine metabolites - α-HICA, HMB-FA, or HMB-Ca - is not a supplementation strategy that improves muscle growth and strength development in young adult men.
SUMMARY Body composition assessment at the molecular level is relevant for the athletic population and its association with high performance is well recognized. The four-compartment molecular model (4C) is the reference method for fat mass (FM) and fat-free mass (FFM) estimation. However, its implementation in a real context is not feasible. Coaches and athletes need practical body composition methods for body composition assessment, and the bioelectrical impedance analysis method (BIA) is usually seen as a useful alternative. The aim of this study was to test the validity of BIA (Tanita, TBF-310) to determine the FM and FFM of elite judo athletes. A total of 29 males were evaluated in a period of weight stability using the reference method (4C) and the alternative method (Tanita, TBF-310). Regarding the 4C method, total-body water was assessed by deuterium dilution, bone mineral by DXA, and body volume by air displacement plethysmography. The slops and intercepts differed from 1 (0.39 and 1.11) and 0 (4.24 and -6.41) for FM and FFM, respectively. FM from Tanita TBF-310 overestimated the 4C method by 0.2 kg although no differences were found for FFM. Tanita TBF-310 explained 21% and 72% respectively in the estimation of absolute values of FM and FFM from the 4C method. Limits of agreement were significant, varying from -6.7 kg to 7.0 kg for FM and from -8.9 kg to 7.5 kg for FFM. In conclusion, TBF-310 Tanita is not a valid alternative method for estimating body composition in highly trained judo athletes.
Neurofeedback training is a technique which has seen a widespread use in clinical applications, but has only given its first steps in the sport environment. Therefore, there is still little information about the effects that this technique might have on parameters, which are relevant for athletes’ health and performance, such as heart rate variability, which has been linked to physiological recovery. In the sport domain, no studies have tried to understand the effects of neurofeedback training on heart rate variability, even though some studies have compared the effects of doing neurofeedback or heart rate biofeedback training on performance. The main goal of the present study was to understand if alpha-band neurofeedback training could lead to increases in heart rate variability. 30 male student-athletes, divided into two groups, (21.2 ± 2.62 year 2/week protocol and 22.6 ± 1.1 year 3/week protocol) participated in the study, of which three subjects were excluded. Both groups performed a pre-test, a trial session and 12 neurofeedback sessions, which consisted of 25 trials of 60 s of a neurofeedback task, with 5 s rest in-between trials. The total neurofeedback session time for each subject was 300 min in both groups. Throughout the experiment, electroencephalography and heart rate variability signals were recorded. Only the three sessions/week group revealed significant improvements in mean heart rate variability at the end of the 12 neurofeedback sessions (p = 0.05); however, significant interaction was not found when compared with both groups. It is possible to conclude that neurofeedback training of individual alpha band may induce changes in heart rate variability in physically active athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.