We report 75 milli-arcsec resolution, near-IR imaging spectroscopy within the central 30 light days of the Galactic Center, taken with the new adaptive optics assisted, integral field spectrometer SINFONI on the ESO-VLT. To a limiting magnitude of K~16, 9 of 10 1 based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory, Chile 1 stars in the central 0.4", and 13 of 17 stars out to 0.7" from the central black hole have spectral properties of B0-B9, main sequence stars. Based on the 2.1127µm HeI line width all brighter early type stars have normal rotation velocities, similar to solar neighborhood stars.We combine the new radial velocities with SHARP/NACO astrometry to derive improved 3 d stellar orbits for six of these 'S'-stars in the central 0.5". Their orientations in space appear random. Their orbital planes are not co-aligned with those of the two disks of massive young stars 1-10" from SgrA*. We can thus exclude the hypothesis that the S-stars as a group inhabit the inner regions of these disks. They also cannot have been located/formed in these disks and then migrated inwards within their planes. From the combination of their normal rotation and random orbital orientations we conclude that the S-stars were most likely brought into the central light month by strong individual scattering events.The updated estimate of distance to the Galactic center from the S2 orbit fit is R o = 7.62 ± 0.32 kpc, resulting in a central mass value of 3.61 ± 0.32 x 10 6 M ⊙ .We happened to catch two smaller flaring events from SgrA* during our spectral observations. The 1.7-2.45µm spectral energy distributions of these flares are fit by a featureless, 'red' power law of spectral index α'=-4±1 (S ν~ν α' ). The observed spectral slope is in good agreement with synchrotron models in which the infrared emission 2 comes from accelerated non-thermal, high energy electrons in a radiative inefficient accretion flow in the central R~10 R s region.
Abstract. We present deep VLT/NACO infrared imaging and spectroscopic observations of the brown dwarf 2MASSWJ 1207334−393254, obtained during our on-going adaptive optics survey of southern young, nearby associations. This ∼25 M Jup brown dwarf, located ∼70 pc from Earth, has been recently identified as a member of the TW Hydrae Association (age ∼ 8 Myr). Using adaptive optics infrared wavefront sensing to acquire sharp images of its circumstellar environment, we discovered a very faint and very red object at a close separation of ∼780 mas (∼55 AU). Photometry in the H, K s and L bands and upper limit in J-band are compatible with a spectral type L5−L9.5. Near-infrared spectroscopy is consistent with this spectral type estimate. Different evolutionary models predict an object within the planetary regime with a mass of M = 5 ± 2 M Jup and an effective temperature of T eff = 1250 ± 200 K.Key words. 2MASSWJ 1207334−393254 -brown dwarf -giant planet -adaptive optics imaging and spectroscopy
Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB-supernovae were thought to be rare events. Whether X-ray flashes--analogues of GRBs, but with lower luminosities and fewer gamma-rays--can also be associated with supernovae, and whether they are intrinsically 'weak' events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB-supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB-supernovae.
Abstract. We report new VLT/NACO imaging observations of the young, nearby brown dwarf 2MASSW J1207334−393254 and its suggested planetary mass companion (2M1207 b). Three epochs of VLT/NACO measurements obtained over nearly one year show that the planetary mass companion candidate shares the same proper motion and, with a high confidence level, is not a stationary background object. This result confirms the status of 2M1207 b as of planetary mass (5 times the mass of Jupiter) and the first image of a planetary mass companion in a different system than our own. This discovery offers new perspectives for our understanding of chemical and physical properties of planetary mass objects as well as their mechanisms of formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.