BackgroundChagas Disease is the leading cause of heart failure in Latin America. Current drug therapy is limited by issues of both efficacy and severe side effects. Trypansoma cruzi, the protozoan agent of Chagas Disease, is closely related to two other major global pathogens, Leishmania spp., responsible for leishmaniasis, and Trypansoma brucei, the causative agent of African Sleeping Sickness. Both T. cruzi and Leishmania parasites have an essential requirement for ergosterol, and are thus vulnerable to inhibitors of sterol 14α-demethylase (CYP51), which catalyzes the conversion of lanosterol to ergosterol. Clinically employed anti-fungal azoles inhibit ergosterol biosynthesis in fungi, and specific azoles are also effective against both Trypanosoma and Leishmania parasites. However, modification of azoles to enhance efficacy and circumvent potential drug resistance has been problematic for both parasitic and fungal infections due to the lack of structural insights into drug binding.Methodology/Principal FindingsWe have determined the crystal structures for CYP51 from T. cruzi (resolutions of 2.35 Å and 2.27 Å), and from the related pathogen T. brucei (resolutions of 2.7 Å and 2.6 Å), co-crystallized with the antifungal drugs fluconazole and posaconazole. Remarkably, both drugs adopt multiple conformations when binding the target. The fluconazole 2,4-difluorophenyl ring flips 180° depending on the H-bonding interactions with the BC-loop. The terminus of the long functional tail group of posaconazole is bound loosely in the mouth of the hydrophobic substrate binding tunnel, suggesting that the major contribution of the tail to drug efficacy is for pharmacokinetics rather than in interactions with the target.Conclusions/SignificanceThe structures provide new insights into binding of azoles to CYP51 and mechanisms of potential drug resistance. Our studies define in structural detail the CYP51 therapeutic target in T. cruzi, and offer a starting point for rationally designed anti-Chagasic drugs with improved efficacy and reduced toxicity.
Structure-based drug design is now well-established for proteins as a key first step in the lengthy process of developing new drugs. In many ways, RNA may be a better target to treat disease than a protein because it is upstream in the translation pathway, so inhibiting a single mRNA molecule could prevent the production of thousands of protein gene products. Virtual screening is often the starting point for structure-based drug design. However, computational docking of a small molecule to RNA seems to be more challenging than that to protein due to the higher intrinsic flexibility and highly charged structure of RNA. Previous attempts at docking to RNA showed the need for a new approach. We present here a novel algorithm using molecular simulation techniques to account for both nucleic acid and ligand flexibility. In this approach, with both the ligand and the receptor permitted some flexibility, they can bind one another via an induced fit, as the flexible ligand probes the surface of the receptor. A possible ligand can explore a low-energy path at the surface of the receptor by carrying out energy minimization with root-mean-square-distance constraints. Our procedure was tested on 57 RNA complexes (33 crystal and 24 NMR structures); this is the largest data set to date to reproduce experimental RNA binding poses. With our procedure, the lowest-energy conformations reproduced the experimental binding poses within an atomic root-mean-square deviation of 2.5 A for 74% of tested complexes.
It is still difficult to obtain a precise structural description of the transition between the deoxy T-state and oxy R-state conformations of human hemoglobin, despite a large number of experimental studies. We used molecular dynamics with the Path Exploration with Distance Constraints (PEDC) method to provide new insights into the allosteric mechanism at the atomic level, by simulating the T-to-R transition. The T-state molecule in the absence of ligands was seen to have a natural propensity for dimer rotation, which nevertheless would be hampered by steric hindrance in the "joint" region. The binding of a ligand to the alpha subunit would prevent such hindrance due to the coupling between this region and the alpha proximal histidine, and thus facilitate completion of the dimer rotation. Near the end of this quaternary transition, the "switch" region adopts the R conformation, resulting in a shift of the beta proximal histidine. This leads to a sliding of the beta-heme, the effect of which is to open the beta-heme's distal side, increasing the accessibility of the Fe atom and thereby the affinity of the protein. Our simulations are globally consistent with the Perutz strereochemical mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.