Transcriptional coregulators control the activity of many transcription factors and are thought to have wide ranging effects on gene expression patterns. We show here that muscle-specific nuclear receptor corepressor 1 (NCoR1) knockout mice have rather selective phenotypic changes, characterized by enhanced exercise endurance due to an increase of both muscle mass and of mitochondrial number and activity. The activation of selected transcription factors that control muscle function, such as MEF2, PPARβ/δ and ERRs, underpinned these phenotypic alterations. NCoR1 levels are decreased in conditions that require fat oxidation resetting transcriptional programs to boost oxidative metabolism. The capacity of NCoR1 to modulate oxidative metabolism may be conserved as the knockdown of gei-8, the sole C.elegans NCoR homolog, also robustly increased muscle mitochondria and respiration. Collectively, our data suggest that NCoR1 plays an adaptive role in muscle physiology and that interference with NCoR1 action could be used to improve muscle function.
Lymph vessels control fluid homeostasis, immunity and metastasis. Unraveling the molecular basis of lymphangiogenesis has been hampered by the lack of a small animal model that can be genetically manipulated. Here, we show that Xenopus tadpoles develop lymph vessels from lymphangioblasts or, through transdifferentiation, from venous endothelial cells. Lymphangiography showed that these lymph vessels drain lymph, through the lymph heart, to the venous circulation. Morpholino-mediated knockdown of the lymphangiogenic factor Prox1 caused lymph vessel defects and lymphedema by impairing lymphatic commitment. Knockdown of vascular endothelial growth factor C (VEGF-C) also induced lymph vessel defects and lymphedema, but primarily by affecting migration of lymphatic endothelial cells. Knockdown of VEGF-C also resulted in aberrant blood vessel formation in tadpoles. This tadpole model offers opportunities for the discovery of new regulators of lymphangiogenesis.
Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.
Wnt-4 is expressed in developing neural and renal tissue and is required for renal tubulogenesis in mouse and Xenopus. The function of Wnt-4 in neural differentiation is unknown so far. Here we demonstrate that Wnt-4 is required for eye development in Xenopus laevis. This effect of Wnt-4 depends on the activation of a b-catenin-independent, noncanonical Wnt signaling pathway. Furthermore, we report the identification of EAF2, a component of the ELL-mediated RNA polymerase II elongation factor complex, as a target gene of Wnt-4 signaling. EAF2 is specifically expressed in the eye and EAF2 expression was dependent on Wnt-4 function. Loss of EAF2 function results in loss of eyes and loss of Wnt-4 function could be rescued by EAF2. In neuralized animal caps, EAF2 has properties characteristic for an RNA polymerase II elongation factor regulating the expression of the eye-specific transcription factor Rx. These data add a new layer of complexity to our understanding of eye development and give further evidence for the importance of noncanonical Wnt pathways in organ development.
The insulin-like growth factors (IGFs) are well known mitogens, both in vivo and in vitro, while functions in cellular differentiation have also been indicated. Here, we demonstrate a new role for the IGF pathway in regulating head formation in Xenopus embryos. Both IGF-1 and IGF-2, along with their receptor IGF-1R, are expressed early during embryogenesis, and the IGF-1R is present particularly in anterior and dorsal structures. Overexpression of IGF-1 leads to anterior expansion of head neural tissue as well as formation of ectopic eyes and cement gland, while IGF-1 receptor depletion using antisense morpholino oligonucleotides drastically reduces head structures. Furthermore, we demonstrate that IGF signaling exerts this effect by antagonizing the activity of the Wnt signal transduction pathway in the early embryo, at the level of beta-catenin. Thus, the IGF pathway is required for head formation during embryogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.