According to the state of mitochondrial respiration, the respiratory chain generates superoxide anions converted into hydrogen peroxide. Two uncoupling proteins (UCP) able to modulate the coupling between the respiratory chain and ATP synthesis are now identified and could be involved in mitochondrial H2O2 generation. UCP1 is specific to brown adipose tissue (BAT) whereas UCP2 is expressed in numerous tissues, particularly in monocytes/macrophages. Preincubation of BAT mitochondrial fractions with GDP, an inhibitor of UCP1, induced a rise in mitochondrial membrane potential (assessed by rhodamine 123 uptake) and H2O2 production. An uncoupling agent reversed this effect. Liver mitochondria exhibited a similar phenotype. GDP was also able to raise membrane potential and H2O2 production of the mitochondria from nonparenchymal cells expressing UCP2, but was completely ineffective on mitochondria from hepatocytes deprived of UCP2. The GDP effect was also observed with mitochondrial fractions of the spleen or thymus, which highly expressed UCP2. Altogether, these results strongly suggest that UCP2 is sensitive to GDP and that the UCPs, particularly UCP2, are able to modulate H2O2 mitochondrial generation. This supports a role for UCP2 in cellular (patho-) physiological processes involving free radicals generated by mitochondria, such as oxidative damage, inflammation, or apoptosis.
Background: Cerebrospinal fluid biomarker profiles characterized by decreased amyloid-beta peptide levels and increased total and phosphorylated tau levels at threonine 181 (pT181) are currently used to discriminate between Alzheimer's disease and other neurodegenerative diseases. However, these changes are not entirely specific to Alzheimer's disease, and it is noteworthy that other phosphorylated isoforms of tau, possibly more specific for the disease process, have been described in the brain parenchyma of patients. The precise detection of these isoforms in biological fluids remains however a challenge. Methods: In the present study, we used the latest quantitative mass spectrometry approach, which achieves a sensitive detection in cerebrospinal fluid biomarker of two phosphorylated tau isoforms, pT181 and pT217, and first analyzed a cohort of probable Alzheimer's disease patients and patients with other neurological disorders, including tauopathies, and a set of cognitively normal controls. We then checked the validity of our results on a second cohort comprising cognitively normal individuals and patients with mild cognitive impairments and AD stratified in terms of their amyloid status based on PiB-PET imaging methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.