The fucosyltransferase gene family encodes enzymes that transfer fucose in alpha 1,2, alpha 1,3/4 and alpha 1,6 linkages on a large variety of glycans. The most ancient genes harbour a split coding sequence, and encode enzyme that transfer fucose at or near O- and N-peptidic sites (serine, threonine or chitobiose unit). Conversely, the more recent genes have a monoexonic coding sequence, and encode enzymes that transfer fucose at the glycan periphery. All basic mechanisms of gene evolution contribute to this amazing scenario: exon shuffling, transposition, point mutations, and duplication. As typical examples: (i) exon shuffling leads to the ancestral organization of the alpha 1,6 fucosyltransferase gene; (ii) the ancestor of alpha 1,2 fucosyltransferase genes is reshaped by retrotransposition at the same locus; (iii) duplication associated to point mutations leads to the most recent alpha 1,3/4 fucosyltransferase genes.
Based on PCR strategies and expression studies, we define the genomic organization of the FUT8b gene. This gene encodes the only known mammalian enzyme transferring fucose in an alpha1-->6 linkage on the asparagine-branched GlcNAc residue of the chitobiose unit of complex N:-glycans. The intron/exon organization of the bovine coding sequence determines five successive functional domains. The first exon encodes a domain homologous to cytoskeleton proteins, the second presents a proline-rich region including a motif XPXPPYXP similar to the peptide ligand of the SH3-domain proteins, the third encodes a gyrase-like domain (an enzyme which can bind nucleotides), and the fourth encodes a peptide sequence homologous to the catalytic domain of proteins transferring sugars. Finally, the last exon encodes a domain homologous to the SH3 conserved motif of the SH2-SH3 protein family. This organization suggests that intramolecular interactions might give a tulip-shaped scaffolding, including the catalytic pocket of the enzyme in the Golgi lumen. Deduced from the published sequence of chromosome 14 (AL109847), the human gene organization of FUT8 seems to be similar to that of bovine FUT8b, although the exon partition is more pronounced (bovine exons 1 and 2 correspond to human exons 1-6). The mosaicism and phylogenetic positions of the alpha6-fucosyltransferase genes are compared with those of other fucosyltransferase genes.
BackgroundSaccharomyces cerevisiae is extensively used in bio-industries. However, its genetic engineering to introduce new metabolism pathways can cause unexpected phenotypic alterations. For example, humanisation of the glycosylation pathways is a high priority pharmaceutical industry goal for production of therapeutic glycoproteins in yeast. Genomic modifications can lead to several described physiological changes: biomass yields decrease, temperature sensitivity or cell wall structure modifications. We have observed that deletion of several N-mannosyltransferases in Saccharomyces cerevisiae, results in strains that can no longer be analyzed by classical PCR on yeast colonies.FindingsIn order to validate our glyco-engineered Saccharomyces cerevisiae strains, we developed a new protocol to carry out PCR directly on genetically modified yeast colonies. A liquid culture phase, combined with the use of a Hot Start DNA polymerase, allows a 3-fold improvement of PCR efficiency. The results obtained are repeatable and independent of the targeted sequence; as such the protocol is well adapted for intensive screening applications.ConclusionsThe developed protocol enables by-passing of many of the difficulties associated with PCR caused by phenotypic modifications brought about by humanisation of the glycosylation in yeast and allows rapid validation of glyco-engineered Saccharomyces cerevisiae cells. It has the potential to be extended to other yeast strains presenting cell wall structure modifications.
The production of therapeutic recombinant glycoproteins deals with three main issues: cost, production capacities, and glycosylation. Nowadays, such proteins are expressed in various complex expression systems (CHO, bacteria, etc.); the processes related to those production hosts are time consuming and expensive, or the question of posttranslational modifications (as glycosylation) control is still unresolved. There is a need to find an alternative approach, while maintaining high quality level: the new system must be able to add complex N-glycan structures to proteins of interest. Developed in several strains of Saccharomyces cerevisiae, GlycodExpress™ is an innovative technology that allows production of therapeutic recombinant glycoproteins with humanized and homogeneous N-glycan moieties. We show how to delete mannosyltransferases involved in host N-glycosylation to obtain more than 90% of homogeneity in glycan structures. The methodology developed to select the optimal fusion between a heterologous glycosyl-enzyme and a localization sequences is also presented. Finally, the screening of the best producing strain is illustrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.