A computer-based decision support system to assist radiologists in diagnosing and grading brain tumours has been developed by the multi-centre INTERPRET project. Spectra from a database of 1 H single-voxel spectra of different types of brain tumours, acquired in vivo from 334 patients at four different centres, are clustered according to their pathology, using automated pattern recognition techniques and the results are presented as a two-dimensional scatterplot using an intuitive graphical user interface (GUI). Formal quality control procedures were performed to standardize the performance of the instruments and check each spectrum, and teams of expert neuroradiologists, neurosurgeons, neurologists and neuropathologists clinically validated each case. The prototype decision support system (DSS) successfully classified 89% of the cases in an independent test set of 91 cases of the most frequent tumour types (meningiomas, low-grade gliomas and high-grade malignant tumours-glioblastomas and metastases). It also helps to resolve diagnostic difficulty in borderline cases. When the prototype was tested by radiologists and other clinicians it was favourably received. Results of the preliminary clinical analysis of the added value of using the DSS for brain tumour diagnosis with MRS showed a small but significant improvement over MRI used alone. In the comparison of individual pathologies, PNETs were significantly better diagnosed with the DSS than with MRI alone.
The present study characterized the metabolic adaptation to persistent AF, unraveling a potential role for ketone bodies, and demonstrated that discordant metabolic alterations are evident in individuals susceptible to post-operative AF.
Background-We sought to perform a systematic lipid analysis of atherosclerotic plaques using emerging mass spectrometry techniques. Methods and Results-A chip-based robotic nanoelectrospray platform interfaced to a triple quadrupole mass spectrometer was adapted to analyze lipids in tissue sections and extracts from human endarterectomy specimens by shotgun lipidomics. Eighteen scans for different lipid classes plus additional scans for fatty acids resulted in the detection of 150 lipid species from 9 different classes of which 24 were detected in endarterectomies only. Further analyses focused on plaques from symptomatic and asymptomatic patients and stable versus unstable regions within the same lesion. Polyunsaturated cholesteryl esters with long-chain fatty acids and certain sphingomyelin species showed the greatest relative enrichment in plaques compared to plasma and formed part of a lipid signature for vulnerable and stable plaque areas in a systems-wide network analysis. In principal component analyses, the combination of lipid species across different classes provided a better separation of stable and unstable areas than individual lipid classes. Conclusions-This
(1)H MRS is an attractive choice for non-invasively diagnosing brain tumours. Many studies have been performed to create an objective decision support system, but there is not yet a consensus as to the best techniques of MRS acquisition or data processing to be used for optimum classification. In this study, we investigate whether LCModel analysis of short-TE (30 ms), single-voxel tumour spectra provide a better input for classification than the use of the original spectra. A total of 145 histologically diagnosed brain tumour spectra were acquired [14 astrocytoma grade II (AS2), 15 astrocytoma grade III (AS3), 42 glioblastoma (GBM), 41 metastases (MET) and 33 meningioma (MNG)], and linear discriminant analyses (LDA) were performed on the LCModel analysis of the spectra and the original spectra. The results consistently suggest improvement in classification when the LCModel concentrations are used. LDA of AS2, MNG and high-grade tumours (HG, comprising GBM and MET) correctly classified 94% using the LCModel dataset compared with 93% using the spectral dataset. The inclusion of AS3 reduced the accuracy to 82% and 78% for LCModel analysis and the original spectra, respectively, and further separating HG into GBM and MET gave 70% compared with 60%. Generally MNG spectra have profiles that are visually distinct from those of the other tumour types, but the classification accuracy was typically about 80%, with MNG with substantial lipid/macromolecule signals being classified as HG. Omission of the lipid/macromolecule concentrations in the LCModel dataset provided an improvement in classification of MNG (91% compared with 76%). In conclusion, there appears to be an advantage to performing pattern recognition on the quantitative analysis of tumour spectra rather than using the whole spectra. However, the results suggest that a two-step LDA process may help in classifying the five tumour groups to provide optimum classification of MNG with high lipid/macromolecule contributions which maybe misclassified as HG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.