Sepsis is a dysregulated immune response to an infection that leads to organ dysfunction. Knowledge of the pathophysiology of organ failure in sepsis is crucial for optimizing the management and treatment of patients and for the development of potential new therapies. In clinical practice, six major organ systems - the cardiovascular (including the microcirculation), respiratory, renal, neurological, haematological and hepatic systems - can be assessed and monitored, whereas others, such as the gut, are less accessible. Over the past 2 decades, considerable amounts of new data have helped improve our understanding of sepsis pathophysiology, including the regulation of inflammatory pathways and the role played by immune suppression during sepsis. The effects of impaired cellular function, including mitochondrial dysfunction and altered cell death mechanisms, on the development of organ dysfunction are also being unravelled. Insights have been gained into interactions between key organs (such as the kidneys and the gut) and organ-organ crosstalk during sepsis. The important role of the microcirculation in sepsis is increasingly apparent, and new techniques have been developed that make it possible to visualize the microcirculation at the bedside, although these techniques are only research tools at present.
From the currently available published data, it is difficult to determine whether there is a relationship between the age of transfused RBCs and outcome in adult patients, except possibly in trauma patients receiving massive transfusion.
Infection is often difficult to recognize in critically ill patients because of the marked coexisting inflammatory process. Lack of early recognition prevents timely resuscitation and effective antimicrobial therapy, resulting in increased morbidity and mortality. Measurement of a biomarker, such as C-reactive protein (CRP) concentration, in addition to history and physical signs, could facilitate diagnosis. Although frequently measured in clinical practice, few studies have reported on the pathophysiological role of this biomarker and its predictive value in critically ill patients. In this review, we discuss the pathophysiological role of CRP and its potential interpretation in the inflammatory processes observed in critically ill patients.
IntroductionThe duration of red blood cell (RBC) storage before transfusion may alter RBC function and supernatant and, therefore, influence the incidence of complications or even mortality.MethodsA MEDLINE search from 1983 to December 2012 was performed to identify studies reporting age of transfused RBCs and mortality or morbidity in adult patients.ResultsFifty-five studies were identified; most were single-center (93%) and retrospective (64%), with only a few, small randomized studies (eight studies, 14.5%). The numbers of subjects included ranged from eight to 364,037. Morbidity outcomes included hospital and intensive care unit (ICU) length of stay (LOS), infections, multiple organ failure, microcirculatory alterations, cancer recurrence, thrombosis, bleeding, vasospasm after subarachnoid hemorrhage, and cognitive dysfunction. Overall, half of the studies showed no deleterious effects of aged compared to fresh blood on any endpoint. Eleven of twenty-two (50%) studies reported no increased mortality, three of nine (33%) showed no increased LOS with older RBCs and eight of twelve (66%) studies showed no increased risks of organ failure. Ten of eighteen (55%) studies showed increased infections with transfusion of older RBCs. The considerable heterogeneity among studies and numerous methodological flaws precluded a formal meta-analysis.ConclusionsIn this systematic review, we could find no definitive argument to support the superiority of fresh over older RBCs for transfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.