This paper provides a comprehensive assessment of the sliding and abrasive wear behaviour of WC-10Co4Cr hardmetal coatings, representative of the existing state-of-the-art. A commercial feedstock powder with two different particle size distributions was sprayed onto carbon steel substrates using two HVOF and two HVAF spray processes.
This paper provides a comprehensive characterisation of HVOF-and HVAF-sprayed Cr 3 C 2-25 wt.% NiCr hardmetal coatings. One commercial powder composition with two different particle size distributions was processed using five HVOF and HVAF thermal spray systems. All coatings contain less Cr 3 C 2 than the feedstock powder, possibly due to the rebound of some Cr 3 C 2rich particles during high-velocity impact onto the substrate. Dry sand-rubber wheel abrasive wear testing causes both grooving and pull-out of splat fragments. Mass losses depend on inter-and intra-lamellar cohesion, being higher (Z 70 mg after a wear distance of 5904 m) for the coatings deposited with the coarser feedstock powder or with one type of HVAF torch. Sliding wear at room temperature against alumina involves shallower abrasive grooving, small-scale delamination and carbide pull-outs, and it is controlled by intra-lamellar cohesion. The coatings obtained from the fine feedstock powder exhibit the lowest wear rates (E5x10 À 6 mm 3 /(Nm)). At 400°C, abrasive grooving dominates the sliding wear behaviour; wear rates increase by one order of magnitude but friction coefficients decrease from E0.7 to E 0.5. The thermal expansion coefficient of the coatings (11.08x10 À 6°C À 1 in the 30-400°C range) is sufficiently close to that of the steel substrate (14.23x 10 À 6°C À 1) to avoid macro-cracking.
Residual stress buildup in thick thermal spray coatings is a property of concern. The adhesion of these coatings to the substrate is influenced by residual stresses that are generated during the coating deposition process. In the HVOF spray process, significant peening stresses are generated during the impact of semimolten particles on the substrate. The combination of these peening stresses together with quenching and thermal mismatch stresses that arise after deposition can be of significant importance. Both numerical method, i.e., Finite Element Method (FEM), and experimental methods, i.e., the Modified Layer Removal Method (MLRM) and Neutron Diffraction, to calculate peening and quenching stresses have been utilized in this work. The investigation was performed on thick Inconel 718 coatings on Inconel 718 substrates. Combined, these numerical and experimental techniques yield a deeper understanding of residual stress formation in the HVOF process and thus a tool for process optimization. The relationship between the stress state and deposit/substrate thickness ratio is given particular interest.
The deformation behavior of additively manufactured Alloy 718 in as-built condition and after annealing was studied in situ under tensile loading along the build direction. Pre-characterization by synchrotron X-ray diffraction and electron microscopy revealed a significant amount of γ″ precipitates in the as-built samples, whereas the γ″ phase was entirely consumed and needle-like δ precipitates appeared in the annealed sample. In situ neutron diffraction (ND) and acoustic emission (AE) enabled indirect observation of the role of the precipitates on the mechanical behavior. ND provided information on the load accommodation in the matrix, while AE detected a strong signal from the interaction of dislocations with the δ-phase precipitates during deformation of the annealed samples. The results imply that in the annealed samples the matrix sheds the load to the precipitates, while in the as-built material the matrix bares a significant load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.