SUMMARYIn mammals, the peroxisome proliferator-activated receptor (PPAR) γ coactivator-1 (PGC-1) family members and their binding partners orchestrate remodelling in response to diverse challenges such as diet, temperature and exercise. In this study, we exposed goldfish to three temperatures (4, 20 and 35°C) and to three dietary regimes (food deprivation, low fat and high fat) and examined the changes in mitochondrial enzyme activities and transcript levels for metabolic enzymes and their genetic regulators in red muscle, white muscle, heart and liver. When all tissues and conditions were pooled, there were significant correlations between the mRNA for the PGC-1 coactivators (both α and β) and mitochondrial transcripts (citrate synthase), metabolic gene regulators including PPARα, PPARβ and nuclear respiratory factor-1 (NRF-1). PGC-1β was the better predictor of the NRF-1 axis, whereas PGC-1α was the better predictor of the PPAR axis (PPARα, PPARβ, medium chain acyl CoA dehydrogenase). In contrast to these intertissue/developmental patterns, the response of individual tissues to physiological stressors displayed no correlations between mRNA for PGC-1 family members and either the NRF-1 or PPAR axes. For example, in skeletal muscles, low temperature decreased PGC-1α transcript levels but increased mitochondrial enzyme activities (citrate synthase and cytochrome oxidase) and transcripts for COX IV and NRF-1. These results suggest that in goldfish, as in mammals, there is a regulatory relationship between (i) NRF-1 and mitochondrial gene expression and (ii) PPARs and fatty acid oxidation gene expression. In contrast to mammals, there is a divergence in the roles of the coactivators, with PGC-1α linked to fatty acid oxidation through PPARα, and PGC-1β with a more prominent role in mediating NRF-1-dependent control of mitochondrial gene expression, as well as distinctions between their respective roles in development and physiological responsiveness.
Recently, a few insects, including the caterpillar larva of the greater wax moth Galleria mellonella , have been identified as avid ‘plastivores’. These caterpillars are able to ingest and metabolize polyethylene at unprecedented rates. While it appears that G. mellonella plays an important role in the biodegradation process, the contribution of its intestinal microbiome remains poorly understood and contested. In a series of experiments, we present strong evidence of an intricate relationship between an intact microbiome, low-density polyethylene (LDPE) biodegradation and the production of glycol as a metabolic by-product. First, we biochemically confirmed that G. mellonella larvae consume and metabolize LDPE, as individual caterpillars fed on polyethylene excreted glycol, but those excretions were reduced by antibiotic treatment. Further, while the gut bacterial communities remained relatively stable regardless of diet, we showed that during the early phases of feeding on LDPE (24–72 h), caterpillars exhibited increased microbial abundance relative to those starved or fed on their natural honeycomb diet. Finally, by isolating and growing gut bacteria with polyethylene as their exclusive carbon source for over 1 year, we identified microorganisms in the genus Acinetobacter that appeared to be involved in this biodegradation process. Taken collectively, our study indicates that during short-term exposure, the intestinal microbiome of G. mellonella is intricately associated with polyethylene biodegradation in vivo .
We used expression and reporter gene analysis to understand how changes in transcription factors impinge on mitochondrial gene expression during myogenesis of cultured murine myoblasts (C2C12 and Sol8). The mRNA levels for nuclear respiratory factor-1 (NRF-1) and NRF-2alpha increased 60% by the third day of myogenesis, whereas NRF-1 and NRF-2 reporter gene activity increased by fivefold over the same period. Although peroxisome proliferator activated receptor (PPARalpha) mRNA levels increased almost 10-fold, the activity of a PPAR reporter was unchanged during myogenesis. The PPAR coactivator PPAR-gamma coactivator-1alpha (PGC1alpha), a master controller of mitochondrial biogenesis, was not expressed at detectable levels. However, the mRNA for both PGC1alpha-related coactivator and PGC1beta was abundant, with the latter increasing by 50% over 3 days of differentiation. We also conducted promoter analysis of the gene for citrate synthase (CS), a common mitochondrial marker enzyme. The proximal promoter ( approximately 2,100 bp) of the human CS lacks binding sites for PPAR, NRF-1, or NRF-2. Deletion mutants, a targeted mutation, and an Sp1 site-containing reporter construct suggest that changes in Sp1 regulation also participate in mitochondrial biogenesis during myogenesis. Because most mitochondrial genes are regulated by PPARs, NRF-1, and/or NRF-2, we conducted inhibitor studies to further support the existence of a distinct pathway for CS gene regulation in myogenesis. Although both LY-294002 (a phosphatidylinositol 3-kinase inhibitor) and SB-203580 (a p38-MAPK inhibitor) blocked myogenesis (as indicated by creatine phosphokinase activity), only SB-203580 prevented the myogenic increase in cytochrome oxidase activity, whereas only LY-294002 blocked the increase in CS (enzyme and reporter gene activities). Collectively, these studies help delineate the roles of some transcriptional regulators involved in mitochondrial biogenesis associated with myogenesis and underscore an import role for posttranscriptional regulation of transcription factor activity.
In adult zebrafish, 4 weeks of exercise training is known to induce an increase in mitochondrial enzymes such as citrate synthase (CS) when determined in mixed (red and white) muscle. However, this remodeling is not accompanied by changes in PGC-1alpha mRNA, a potent inducer of mitochondrial biogenesis in mammals. To further understand this response, we examined absolute and relative changes in red muscle area by histochemistry after 4 weeks of swim training. We also examined fiber-type specific responses in the expression of metabolic genes and putative regulators in red and white muscle of adult zebrafish at 1 and 8 weeks of training and in recovery from a single bout of exercise. Total red muscle area was unaltered after 4 weeks of training. The mRNA expression of CS was unaffected in red muscle, while it was increased in white muscle after 1 week of training and remained elevated at 8 weeks of training, suggesting an increase in oxidative capacity of this fiber type. In contrast, PGC-1alpha mRNA was elevated in both muscles only after 1 week of training. In both muscles, an acute bout of exercise rapidly (within 0-2 h post-exercise) induced PGC-1alpha mRNA and a delayed (24 h) increase in CS mRNA post-exercise. These results suggest complex temporal and spatial adaptive molecular responses to exercise in the skeletal muscles of zebrafish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.