In silico prediction of human oral bioavailability is a relevant tool for the selection of potential drug candidates and for the rejection of those molecules with less probability of success during the early stages of drug discovery and development. However, the high variability and complexity of oral bioavailability and the limited experimental data in the public domain have mainly restricted the development of reliable in silico models to predict this property from the chemical structure. In this study we present a KNIME automated workflow to predict human oral bioavailability of new drug and drug-like molecules based on five machine learning approaches combined into an ensemble model. The workflow is freely accessible and allows the quick and easy prediction of oral bioavailability for new molecules. Users do not require any knowledge or advanced experience in machine learning or statistical modeling to automatically obtain their predictions, increasing the potential use of the present proposal.
In-silico prediction of aqueous solubility plays an important role during the drug discovery and development processes. For many years, the limited performance of in-silico solubility models has been attributed to the lack of high-quality solubility data for pharmaceutical molecules. However, some studies suggest that the poor accuracy of solubility prediction is not related to the quality of the experimental data and that more precise methodologies (algorithms and/or set of descriptors) are required for predicting aqueous solubility for pharmaceutical molecules. In this study a large and diverse database was generated with aqueous solubility values collected from two public sources; two new recursive machine-learning approaches were developed for data cleaning and variable selection, and a consensus model based on regression and classification algorithms was created. The modeling protocol, which includes the curation of chemical and experimental data, was implemented in KNIME, with the aim of obtaining an automated workflow for the prediction of new databases. Finally, we compared several methods or models available in the literature with our consensus model, showing results comparable or even outperforming previous published models.
In silico prediction of antileishmanial activity using quantitative structure−activity relationship (QSAR) models has been developed on limited and small datasets. Nowadays, the availability of large and diverse high-throughput screening data provides an opportunity to the scientific community to model this activity from the chemical structure. In this study, we present the first KNIME automated workflow to modeling a large, diverse, and highly imbalanced dataset of compounds with antileishmanial activity. Because the data is strongly biased toward inactive compounds, a novel strategy was implemented based on the selection of different balanced training sets and a further consensus model using single decision trees as the base model and three criteria for output combinations. The decision tree consensus was adopted after comparing its classification performance to consensuses built upon Gaussian-Naıve-Bayes, Support-Vector-Machine, Random-Forest, Gradient-Boost, and Multi-Layer-Perceptron base models. All these consensuses were rigorously validated using internal and external test validation sets and were compared against each other using Friedman and Bonferroni−Dunn statistics. For the retained decision tree-based consensus model, which covers 100% of the chemical space of the dataset and with the lowest consensus level, the overall accuracy statistics for test and external sets were between 71 and 74% and 71 and 76%, respectively, while for a reduced chemical space (21%) and with an incremental consensus level, the accuracy statistics were substantially improved with values for the test and external sets between 86 and 92% and 88 and 92%, respectively. These results highlight the relevance of the consensus model to prioritize a relatively small set of active compounds with high prediction sensitivity using the Incremental Consensus at high level values or to predict as many compounds as possible, lowering the level of Incremental Consensus. Finally, the workflow developed eliminates human bias, improves the procedure reproducibility, and allows other researchers to reproduce our design and use it in their own QSAR problems.
The principle of F-projection, in sequential function estimation, provides a theoretical foundation for a class of gaussian radial basis function networks known as the resource allocating networks (RAN). The ad hoc rules for adaptively changing the size of RAN architectures can be justified from a geometric growth criterion defined in the function space. In this paper, we show that the same arguments can be used to arrive at a pruning with replacement rule for RAN architectures with a limited number of units. We illustrate the algorithm on the laser time series prediction problem of the Santa Fe competition and show that results similar to those of the winners of the competition can be obtained with pruning and replacement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.