Several problems in algebraic geometry and coding theory over finite rings are modeled by systems of algebraic equations. Among these problems, we have the rank decoding problem, which is used in the construction of public-key cryptography. In 2004, Nechaev and Mikhailov proposed two methods for solving systems of polynomial equations over finite chain rings. These methods used solutions over the residual field to construct all solutions step by step. However, for some types of algebraic equations, one simply needs partial solutions. In this paper, we combine two existing approaches to show how Gröbner bases over finite chain rings can be used to solve systems of algebraic equations over finite commutative rings. Then, we use skew polynomials and Plücker coordinates to show that some algebraic approaches used to solve the rank decoding problem and the MinRank problem over finite fields can be extended to finite principal ideal rings.
Abstract. This paper presents a characterization of q-ary images of systematic codes. It is also shown that every self-dual code over GF(q m) has a self-dual q-ary image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.