A combination of elemental, functional and molecular analyses performed on amorphous organic residues dating from the Iron Age was developed in order to identify these remains and to understand their relationship with ceramic vessels in which some of them were found. These analyses made it possible to distinguish between ceramic vessels used for the production or storage of adhesive materials, mainly birch bark tar, and those dedicated to the preparation of culinary commodities, which contained animal fats. The organization of the production of adhesives is described and the addition of beeswax to birch bark tar is reported for the first time. The use of birch bark tar for coating ceramic vessels is also discussed.
The understanding of fossilization mechanisms at the nanoscale remains extremely challenging despite its fundamental interest and its implications for paleontology, archaeology, geoscience, and environmental and material sciences. The mineralization mechanism by which cellulosic, keratinous, and silk tissues fossilize in the vicinity of archaeological metal artifacts offers the most exquisite preservation through a mechanism unexplored on the nanoscale. It is at the center of the vast majority of ancient textiles preserved under nonextreme conditions, known through extremely valuable fragments. Here we show the reconstruction of the nanoscale mechanism leading to the preservation of an exceptional collection of ancient cellulosic textiles recovered in the ancient Near East (4,000 to 5,000 years ago). We demonstrate that even the most mineralized fibers, which contain inorganic compounds throughout their histology, enclose preserved cellulosic remains in place. We evidence a process that combines the three steps of water transport of biocidal metal cations and soil solutes, degradation and loss of crystallinity of cellulosic polysaccharides, and silicification.
During the Middle Ages, the partition of the cadaver of the elite members was a current practice, with highly technical treatment given to symbolic organs such as the heart. Considered mostly from a theoretical point of view, this notion of dilaceratio corporis has never been biologically explored. To assess the exact kind of embalming reserved to the heart, we performed a full biomedical analysis of the mummified heart of the English King Richard I (1199 A.D.). Here we show among other aspects, that the organ has been embalmed using substances inspired by Biblical texts and practical necessities of desiccation. We found that the heart was deposed in linen, associated with myrtle, daisy, mint, frankincense, creosote, mercury and, possibly, lime. Furthermore, the goal of using such preservation materials was to allow long-term conservation of the tissues, and good-smelling similar to the one of the Christ (comparable to the odor of sanctity).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.