Polyamine analogues show antitumor activity in experimental models and their ability to alter activity of cytotoxic chemotherapeutic agents in breast cancer is well documented. Association of polyamines with nucleic acids and protein is included in their mechanism of action. The aim of this study was to examine the interaction of human serum albumin (HSA) with several polyamine analogues such as 1,3,7,11,7,11,15, in aqueous solution at physiological conditions, using a constant protein concentration and various polyamine contents (μM to mM). FTIR, UVvisible and CD spectroscopic methods were used to determine the polyamine binding mode and the effects of polyamine complexation on protein stability and secondary structure.Structural analysis showed that polyamines bind non-specifically (H-bonding) via polypeptide polar groups with binding constants of K 333 = 9.30 × 10 3 M −1 , K BE-333 = 5.63 × 10 2 M −1 and K BE-3333 = 3.66 × 10 2 M −1 . The protein secondary structure showed major alterations with reduction of α-helix from 55% (free protein) to 43-50% and increase of β-sheet from 17% (free protein) to 29-36% in the 333-, BE-333-and BE-3333 complexes, indicating a partial protein unfolding upon polyamine interaction. HSA structure was less perturbed by polyamine analogues than those of the biogenic polyamines.
Complexes of cationic liposomes with DNA are promising tools to deliver genetic information into cells for gene therapy and vaccines. Electrostatic interaction is thought to be the major force in lipid–DNA interaction, while lipid-base binding and the stability of cationic lipid–DNA complexes have been the subject of more debate in recent years. The aim of this study was to examine the complexation of calf-thymus DNA with cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioctadecyldimethylammoniumbromide (DDAB) and dioleoylphosphatidylethanolamine (DOPE), at physiological condition, using constant DNA concentration and various lipid contents. Fourier transform infrared (FTIR), UV-visible, circular dichroism spectroscopic methods and atomic force microscopy were used to analyse lipid-binding site, the binding constant and the effects of lipid interaction on DNA stability and conformation. Structural analysis showed a strong lipid–DNA interaction via major and minor grooves and the backbone phosphate group with overall binding constants of KChol = 1.4 (±0.5) × 104 M−1, KDDAB = 2.4 (±0.80) × 104 M−1, KDOTAP = 3.1 (±0.90) × 104 M−1 and KDOPE = 1.45 (± 0.60) × 104 M−1. The order of stability of lipid–DNA complexation is DOTAP>DDAB>DOPE>Chol. Hydrophobic interactions between lipid aliphatic tails and DNA were observed. Chol and DOPE induced a partial B to A-DNA conformational transition, while a partial B to C-DNA alteration occurred for DDAB and DOTAP at high lipid concentrations. DNA aggregation was observed at high lipid content.
Biogenic polyamines, putrescine, spermidine, and spermine, are ubiquitous cellular cations and exert multiple biological functions. Polyamine analogues mimic biogenic polyamines at macromolecular level but are unable to substitute for natural polyamines and maintain cell proliferation, indicating biomedical applications. The mechanistic differences in DNA binding mode between natural and synthetic polyamines have not been explored. The aim of this study was to examine the interaction of calf thymus DNA with three polyamine analogues, 1,11-diamino-4,8-diazaundecane (333), 3,7,11,15-tetrazaheptadecane x 4 HCl (BE-333), and 3,7,11,15,19-pentazahenicosane x 5 HCl (BE-3333), using FTIR, UV-visible, and CD spectroscopy. Polyamine analogues bind with guanine and backbone PO2 group as major targets in DNA, whereas biogenic polyamines bind to major and minor grooves as well as to phosphate groups. Weaker interaction with DNA was observed for analogues with respect to biogenic polyamines, with K(333) = 1.90 (+/-0.5) x 10(4) M(-1), K(BE-333) = 6.4 (+/-1.7) x 10(4) M(-1), K(BE-3333) = 4.7 (+/-1.4) x 10(4) M(-1) compared to K(Spm) = 2.3 (+/-1.1) x 10(5) M(-1), K(Spd) = 1.4 (+/-0.6) x 10(5) M(-1), and K(Put) = 1.02 (+/-0.5) x 10(5) M(-1). A partial B- to A-DNA transition was also provoked by analogues. These data suggest distinct differences in the binding of natural and synthetic polyamines with DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.