Symptomatic vertebral hemangiomas during pregnancy are rare, as only 27 cases have been reported in the literature since 1948. However, symptomatic vertebral hemangiomas can be responsible for spinal cord compression, in which case they constitute a medical emergency, which raises management difficulties in the context of pregnancy. Pregnancy is a known factor responsible for deterioration of these vascular tumors. In this paper, the authors report 2 clinical cases of symptomatic vertebral hemangiomas during pregnancy, including 1 case of spontaneous fracture that has never been previously reported in the literature. The authors then present a brief review of the literature to discuss emergency management of this condition. The first case was a 28-year-old woman at 35 weeks of gestation, who presented with paraparesis. Spinal cord MRI demonstrated a vertebral hemangioma invading the body and posterior arch of T-3 with posterior epidural extension. Laminectomy and vertebroplasty were performed after cesarean section, allowing neurological recovery. The second case involved a 35-year-old woman who presented with spontaneous fracture of T-7 at 36 weeks of gestation, revealing a vertebral hemangioma with no neurological deficit, but it was responsible for pain and local instability. Treatment consisted of postpartum posterior interbody fusion. With a clinical and radiological follow-up of 2 years, no complications and no modification of the hemangiomas were observed. A review of the literature reveals discordant management of these rare cases, which is why the treatment course must be decided by a multidisciplinary team as a function of fetal gestational age and maternal neurological features.
These 2 cases highlight the importance of closely monitoring children with ulcerated CH because of the risk of severe bleeding. Embolization is the treatment of choice in the case of severe bleeding, as the natural history of RICH is to spontaneously regress.
Synthetic analogs to natural extracellular matrix (ECM) at the nanometer level are of great potential for regenerative medicine. This study introduces a novel and simple method to produce polymer nanofibers and evaluates the properties of the resulting structures, as well as their suitability to support cells and their potential interest for bone and vascular applications. The devised approach diffracts a polymer solution by means of a spraying apparatus and of an airstream as sole driving force. The resulting nanofibers were produced in an effective fashion and a factorial design allowed isolating the processing parameters that control nanofiber size and distribution. The nanofibrillar matrices revealed to be of very high porosity and were effectively colonized by human bone marrow mesenchymal cells, while allowing ECM production and osteoblastic differentiation. In vivo, the matrices provided support for new bone formation and provided a good patency as small diameter vessel grafts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.