Minute concentrations of suspended particles can dramatically alter the behavior of a drying droplet. After a period of isotropic shrinkage, similar to droplets of a pure liquid, these droplets suddenly buckle like an elastic shell. While linear elasticity is able to describe the morphology of the buckled droplets, it fails to predict the onset of buckling. Instead, we find that buckling is coincident with a stress-induced fluid to solid transition in a shell of particles at a droplet's surface, occurring when attractive capillary forces overcome stabilizing electrostatic forces between particles.
We study the existence, the stability properties, and the bifurcation structure of static localized solutions in one dimension, near the robust existence of stable fronts between homogeneous solutions and periodic patterns.
We present a study on buckling of colloidal particles, including experimental, theoretical and numerical developments. Oil-filled thin shells prepared by emulsion templating show buckling in mixtures of water and ethanol, due to dissolution of the core in the external medium. This leads to conformations with a single depression, either axisymmetric or polygonal depending on the geometrical features of the shells. These conformations could be theoretically and/or numerically reproduced in a model of homogeneous spherical thin shells with bending and stretching elasticity, submitted to an isotropic external pressure.
In this paper we describe how to use the bifurcation structure of static localized solutions in one dimension to store information on a medium in such a way that no extrinsic grid is needed to locate the information. We demonstrate that these principles, deduced from the mathematics adapted to describe one-dimensional media, also allow one to store information on two-dimensional media.
We give a hydrodynamical explanation for the chaotic behaviour of a dripping faucet using the results of the stability analysis of a static pendant drop and a proper orthogonal decomposition (POD) of the complete dynamics. We find that the only relevant modes are the two classical normal forms associated with a Saddle-Node-Andronov bifurcation and a Shilnikov homoclinic bifurcation. This allows us to construct a hierarchy of reduced order models including maps and ordinary differential equations which are able to qualitatively explain prior experiments and numerical simulations of the governing partial differential equations and provide an explanation for the complexity in dripping. We also provide a new mechanical analogue for the dripping faucet and a simple rationale for the transition from dripping to jetting modes in the flow from a faucet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.