Many therapeutic drugs are excluded from entering the brain, due to their lack of transport through the blood-brain barrier (BBB). To overcome this problem, we have developed a novel method in which short, naturally derived peptides (16 -18 amino acids) cross the cellular membranes of the BBB with high efficiency and without compromising its integrity. The antineoplastic agent doxorubicin (dox) was coupled covalently to two peptides, D-penetratin and SynB1. The ability of dox to cross the BBB was studied using an in situ rat brain perfusion technique and also by i.v. injection in mice. In the brain perfusion studies, we first confirmed the very low brain uptake of free radiolabeled dox because of the efflux activity of P-glycoprotein at the BBB. By contrast, we have demonstrated that when dox is coupled to either the D-penetratin or SynB1 vectors, its uptake was increased by a factor of 6, suggesting that the vectorized dox bypasses P-glycoprotein. Moreover, using a capillary depletion method, we have shown that vectorization of dox led to a 20-fold increase in the amount of dox transported into brain parenchyma.
An in situ mouse brain perfusion model predictive of passive and carrier-mediated transport across the blood-brain barrier (BBB) was developed and applied to mdr1a P-glycoprotein (Pgp)-deficient mice [mdr1a(-/-)]. Cerebral flow was estimated from diazepam uptake. Physical integrity of the BBB was assessed with sucrose/inulin spaces; functional integrity was assessed with glucose uptake, which was saturable with a Km of approximately 17 mmol/L and Vmax of 310 mmol x 100 g(-1) x min(-1). Brain uptake of a Pgp substrate (colchicine) was significantly enhanced (two- to fourfold) in mdr1a(-/-) mice. These data suggest that the model is applicable to elucidating the effects of efflux transporters, including Pgp, on brain uptake.
Experimental studies investigating the effects of endocrine disruptors frequently identify potential unconventional dose-response relationships called non-monotonic dose-response (NMDR) relationships. Standardized approaches for investigating NMDR relationships in a risk assessment context are missing. The aim of this work was to develop criteria for assessing the strength of NMDR relationships. A literature search was conducted to identify published studies that report NMDR relationships with endocrine disruptors. Fifty-one experimental studies that investigated various effects associated with endocrine disruption elicited by many substances were selected. Scoring criteria were applied by adaptation of an approach previously used for identification of hormesis-type dose-response relationships. Out of the 148 NMDR relationships analyzed, 82 were categorized with this method as having a “moderate” to “high” level of plausibility for various effects. Numerous modes of action described in the literature can explain such phenomena. NMDR can arise from numerous molecular mechanisms such as opposing effects induced by multiple receptors differing by their affinity, receptor desensitization, negative feedback with increasing dose, or dose-dependent metabolism modulation. A stepwise decision tree was developed as a tool to standardize the analysis of NMDR relationships observed in the literature with the final aim to use these results in a Risk Assessment purpose. This decision tree was finally applied to studies focused on the effects of bisphenol A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.